
1. INTRODUCTION

First proposed and used in the 1960s, virtual machines
are experiencing a revival in the commercial and research
communities. Recent commercial products such as
VMware and Virtual faithfully emulate complete x86-
based computers. These products are widely used (e.g.
VMware has more than 500,000 registered users) for
purposes such as running Windows applications on
Linux and testing software compatibility on different
operating systems. At least two recent research projects
also use virtual machines: Disco uses virtual machines
to run multiple commodity operating systems on large-
scale multiprocessors [4]; Hypervisor uses virtual
machines to replicate the execution of one computer onto
a backup [3]. Our position is that the operating system
and applications that currently run directly on real
machines should relocate into a virtual machine running
on a real machine(Figure 1). The only programs that run
directly on the real machine would be the host operating
system, the virtual machine monitor, programs that
provide local administration, and additional services
enabled by this virtual machine-centric structure. Most
network services would run in the virtual machine; the
real machine would merely forward network packets for
the virtual machine. This virtual-machine-centric model
allows us to provide services below most code running
on the computer,similar to providing services in the
hardware of a real machine. Because these services are
implemented in a layer of software (the virtual machine
monitor or the host operating system), they can be
provided more easily and flexibly than they could if they
were implemented by modifying the hardware.

Security in Virtual Machine is better than Real Machine

P. Felacy Silvia1, R. Karthiha2, R. Aarthy3 & C. Suresh Gnana Das4

Final year Comp. Sci. Engg.1,2&3 and Professor,Comp Sci.Engg4

Vel Tech Multi Tech Dr.Rangarajan Dr.Sakunthala Engg College
felcysilvia@gmail.com1, rkarthiha@gmail.com 2, aarthyraviz@gmail.com3, sureshc.be@gmail.com4

ABSTRACT
This position paper argues that the operating system and applications currently running on a real machine should
relocate into a virtual machine. This structure enables services to be added below the operating system and to do so
without trusting or modifying the operating system or applications. To demonstrate the usefulness of this structure,
we describe three services that take advantage of it: secure logging, intrusion prevention and detection, and
environment migration. In particular, we can provide services below the guest operating system without trusting or
modifying it. We believe providing services at this layer are especially useful for enhancing security and mobility.
This position paper describes the general benefits and challenges that arise from running most applications in a
virtual machine, then describes some example services and alternative ways to provide those services.

Keywords: Virtual Machine, Secure Logging, Intrusion Prevention and Detection and Environment Migration.

Fig 1: Virtual-machine Structure. In this Model, Most
Applications that Currently Run on Real Machines Relocate
into a Virtual Machine Running on the Host Machine. The

Virtual Machine Monitor and Local Administrative Programs
Run Directly on the Host Machine. In VMware, the Virtual

Machine Monitor Issues I/O through the Host Operating
System, so Services that Manipulate I/O Events can be

Implemented in the Host Operating System [2].

2. WHY VIRTUAL MACHINE
The main advantages of system VMs are:

• Multiple OS environments can co-exist on the
same computer, in strong isolation from each
other;

• The virtual machine can provide an instruction
set architecture (ISA) that is somewhat different
from that of the real machine;

• Application provisioning, maintenance, high
availability and disaster recovery[2] .

• Where all these factors are not efficiently
supported by real machines.

3. SERVICES PROVIDED BY VIRTUAL MACHINE
Providing services by modifying a virtual machine
hassimilar benefits to providing services by modifying a
real machine. These services run separately from all
processes in the virtual machine, including the guest
operating system. This separation benefits security and
portability.

International Journal of Computer Science & CommunicationVol. 1, No. 1, January-June 2010, pp. 7-11

mailto:felcysilvia@gmail.com1
mailto:rkarthiha@gmail.com
mailto:aarthyraviz@gmail.com3
mailto:be@gmail.com4

International Journal of Computer Science & Communication (IJCSC)8

Security is enhanced because the services do not have
totrust the guest operating system; they have only to trust
the virtual machine monitor, which is considerably
smallerand simpler. Trusting the virtual machine
monitor is akin to trusting a real processor; both expose
a narrow interface (the instruction set architecture). In
contrast, services in an operating system are more
vulnerable to malicious and random faults, because
operating systems are larger andmore prone to security
and reliability holes. Separating the services from the
guest operating system also enhances portability. We can
implement the services without needing to change the
operating system, so they can work across multiple
operating system vendors and versions.While providing
services in a virtual machine gains similar benefits to
providing services in a real machine, virtual machines
have some advantages over the physical machines they
emulate. First, a virtual machine can be modified more
easily than a physical machine, because the virtual
machine monitor that creates the virtual machine.

Second, it is much easier to manipulate the state of a
virtual machine than the state of a physical machine. The
state of the virtual machine can be saved, cloned,
encrypted, moved, or restored, none of which is easy to
do with physical machines. Third, a virtual machine has
a very fast connection to another computing system, that
is, the host machine on which the virtual machine
monitor is running. In contrast, physical machines are
separated by physical networks, which are slower than
the memory bus that connects a virtual machine with its
host.

The three services that can be provided at the virtual-
machine level.

Others have used virtual machines for many other
purposes, such as preventing one server from
monopolizing machine resources, education, easing the
development of privileged software, and software
development for different operating systems[10].

3.1. Secure Logging
Most operating systems log interesting events as part of
their security strategy. For example, a system might keep
a record of login attempts and received/sent mail.
System administrators use the logged information for
a variety of purposes. For example, the log may help
administrators understand how a network intruder
gained access to the system, or it may help administrators
know what damage the intruder inflicted after he gained
access. Unfortunately, the logging used in current
systems has two important shortcomings: integrity and
completeness. First, an attacker can easily turn off logging
after he takes over the system; thus the contents of the
log cannot be trusted after the point of compromise.
Second, it is difficult to anticipate what information may

be needed during the post attack analysis; thus the log
may lack information needed to discern how the intruder
gained access or what actions he took after gaining access.

The virtual machine monitor is much smaller and
simplerthan the guest operating system and hence is less
vulnerable to attack. To improve the completeness of
logging, we propose logging enough data to replay the
complete execution of the virtual machine [3]. The
information needed to accomplish a faithful replay is
limited to a checkpoint with which to initialize the
replaying virtual machine, plus the non-deterministic
events that affected the original execution of the virtual
machine since the time of the saved checkpoint. These
non-deterministic events fall into two categories: external
input and time. External input refers to data sent by
a non- logged entity, such as a human user oran external
computer (e.g. a web server). Time refers to the exact
point in the execution stream at which an event takes
place. For example, to replay the interleaving pattern
between threads, we must log which instruction is
preempted by a timer interrupt [17] (we assume the
virtualmachine monitor is not running on a multi-
processor). Note that most instructions executed by the
virtual machine do not need to be logged; only the
relatively infrequent non-deterministic events need to be
logged.

We can reduce thevolume of logged network data
greatly by using messagelogging techniques developed
in the fault-tolerance community. For example, there is
no need to log message data received from computers
that are themselves being logged, because these
computers can be replayed to reproduce the sent message
data [11]. For an important class of servers (e.g. web
servers), the volume of data received in messages is
relatively small (HTTP GET and POST requests). Last,
as disk prices continue to plummet, more computers
(especially servers worthy of being logged) will be able
to devote many gigabytes to store log data [20].

3.2. Intrusion Prevention and Detection
Another important component to a security strategy is
detecting and thwarting intruders. Ideally, these systems
prevent intrusions by identifying intruders as they attack
the system [9]. These systems also try to detect intrusions
after the fact by monitoring the events and state of the
computer for signs that a computer has been
compromised [8, 12]. Virtual machines offer the potential
for improving both intrusion prevention and intrusion
detection. Intrusion preventers work by monitoring
events that enter or occur on the system, such as incoming
network packets. Signature-based preventers match
these input events against a database of known attacks;
anomalybased preventers look for input events that differ
from the norm. Both these types of intrusion preventers

Security in Virtual Machine is better than Real Machine 9

have flaws, however. Signature - based systems can
only thwart attacks that have occurred in the past, been
analyzed, and been integrated into the attack database.
Anomaly-based systems can raise too many false alarms
and may be susceptible to re-training attacks. A more
trustworthy method of recognizing an attack is to simply
run the input event on the real system and seeing how
the system responds. Of course, running suspicious
events on the real system risks compromising the system.

However, we can safely conduct this type of test on
a clone of the real system. A potential obstacle to using
clone-based intrusion prevention is the effect of clone
creation or maintenance on the processing of innocent
events. To avoid blocking the processing of innocent
events, an intrusion preventer would ideally run the
clone in the background. Allowing innocent events to
go forward while evaluating suspicious events implies
that these events have loose ordering constraints. For
example, a clone-based preventer could be used to test
e-mail messages for viruses, because ordering constraints
between e-mail messages are very loose. Intrusion
detectors try to detect the actions of intruders after they
have compromised a system. Signs of an intruder might
include bursts of outgoing network packets (perhaps
indicating a compromised computer launching a denial-
of-service attack), modified system files [12], or abnormal
system-call patterns from utility programs [8]. As with
system logging, these intrusion detectors fall short in
integrity or completeness. Host-based intrusion detectors
(such as those that monitor system calls) may be turned
off by intruders after they compromise the system, so
they are primarily useful only for detecting the act of an
intruder breaking into a system. If an intruder evades
detection at the time of entry, he can often disarm a
host based intrusion detector to avoid detection in the
future. Network-based intrusion detectors can provide
better integrity by being separate from the host operating
system (e.g. in a standalone network router), but they
suffer from a lack of completeness. Network
intrusion detectors can see only network packets; they
cannot see the myriad other events occurring in a
computer system, such as disk traffic, keyboard events,
memory usage, and CPU usage.

Implementing post-intrusion detection at the level
of a virtual machine offers the potential for providing
both integrity and completeness. Like a network-based
intrusion detector, virtual machine-based intrusion
detectors are separate from the guest operating system
and applications.

Unlike network intrusion detectors, however,
virtual- machine intrusion detectors can see all events
occurring in the virtual machine they monitor. Virtual
machine intrusion detectors can use this additional
information to implement new detection policies. For
example, it could detect if the virtual machine reads

certain disk blocks (e.g. containing passwords), then
issues a burst of CPU activity (e.g. cracking the
passwords). Or it could detect if the virtual machine has
intense CPU activity with no corresponding keyboard
activity. As with secure logging, a key challenge in post-
intrusion detection in a virtual machine is how to bridge
the semantic gap between virtual machine events and
operating system events. This challenge is similar to that
encountered by network-based intrusion detectors,
which must parse the contents of IP packets.

3.3. Environment Migration
Process migration has been a topic of interest from the
early days of distributed computing. Migration allows
one to package a running computation—either a process
or collection of processes—and move it to a different
physical machine. Using migration, a user’s
computations can move as he does, taking advantage of
hardware that is more convenient to the user’s current
location.

The earliest systems, including Butler [15], Condor
[14], and Sprite [6], focused on load sharing across
machines rather than supporting mobile users. These
load sharing systems typically left residual dependencies
on the source machine for transparency, and considered
an individual process as the unit of migration. This view
differs from that of mobile users, who consider the unit
of migration to be the collection of all applications
running on their current machine.

Recently, migration systems have begun to address
the needs of mobile users. Examples of systems
supporting mobility include the Teleporting system [16]
and SLIM [18]. These systems migrate the user interface
of a machine, leaving the entire set of applications to run
on their host machine. In the limit, the display device
can be a stateless, thin client. This approach provides a
better match to the expectations of a migrating user, and
need not deal with residual dependencies. However,
these systems are intolerant of even moderate latency
between the interface device and the cycle server, and
thus support only a limited form of user mobility.

There are several challenges that must be overcome
to provide migration at the virtual-machine level. The
first is that a machine has substantial state that must move
with it. It would be infeasible to move this state
synchronously on migration. Fortunately, most of this
state is not needed immediately, and much may never
be needed at all. We can predict which state is needed
soon by taking advantage of temporal locality in disk
and memory accesses. This prediction is complicated by
the guest operating system’s virtual memory abstraction,
because the physical addresses seen by a virtual machine
monitor are related only indirectly to accesses issued by
applications. We can reconstruct information about

International Journal of Computer Science & Communication (IJCSC)10

virtual to physical mapping by observing manipulation
of virtualized hardware elements such as the TLB.

After identifying the state likely to be needed soon,
we need a mechanism to support migration of that state
to the new virtual machine. If migration times are
exposed, one can take advantage of efficient, wide-area
consistency control schemes, such as that provided by
Fluid Replication [5]. It depends on typical file system
access patterns, in particular a low incidence of
concurrent data sharing.

4. CHALLENGES HOLD BY VIRTUAL MACHINE

Providing services at the virtual-machine level holds two
challenges. The first is performance. Running all
applications above the virtual machine hurts
performance due to virtualization overhead. For
example, system calls in a virtual machine must be
trapped by the virtual machine monitor and re-directed
to the guest operating system. Hardware operations
issued by the guest must be trapped by the virtual
machine monitor, translated, and reissued. Some
overhead is unavoidable in a virtual machine; the
services enabled by that machine must outweigh this
performance cost. Virtualizing an x86-based machine
incurs additional overheads because x86 processors don’t
trap on some instructions that must be virtualized (e.g.
reads of certain system registers). One way to implement
a virtual machine in the presence of these “non-
virtualizable” instructions is to re-write the binaries at
run time to force these instructions to trap [13], but this
incurs significant overhead. The second challenge of
virtual-machine services is the semantic gap between the
virtual machine and the service. Services in the virtual
machine operate below the abstractions provided by the
guest operating system and applications. This can make
it difficult to provide services. For example, it is difficult
to provide a service that checks file system integrity
without knowledge of on-disk structures. Some services
do not need any operating system abstractions; secure
logging (Section 4.1) is an example of such a service. For
services that require higher-level information, one must
re-create this information in some form. Full semantic
information requires re-implementing guest OS
abstractions in or below the virtual machine. However,
there are several abstractions—virtual address spaces,
threads of control, network protocols, and file system
formats— that are shared across many operating systems.
By observing manipulations of virtualized hardware, one
can reconstruct these generic abstractions, enabling
services that require semantic information.

5. ALTERNATIVE APPROACH FOR IMPLEMENTING
SERVICES OF VIRTUAL MACHINE

Each of the above services can be implemented in other
ways. One alternative is to include these services in the

operating system. This structure makes it easier for the
service to access information in terms of operating
system abstractions. For example, an intrusion detector
at the operating system level may be able to detect when
one user modifies files owned by another user. A virtual
machine service, in contrast, operates below the notions
of users and files and would have to reconstruct these
abstractions. In addition, including these services in the
operating system reduces the number of layers and
redirections, which will likely improve performance
relative to a virtual machine.

However, including services in the operating system
has some disadvantages. First, such services are limited
to a single operating system (and perhaps a single
operating system version), whereas virtual-machine
services can support multiple operating systems. For
example, a secure logging service in a virtual machine
can replay any operating system. Second, for security
services such as secure logging and intrusion detection,
including the service in the operating system depends
critically on the integrity of the operating system.
Because operating systems are typically large, complex,
and monolithic, they usually contain security and
reliability vulnerabilities. For example, the Linux 2.2.16
kernel contained at least 7 security holes [1]. In particular,
secure logging is challenging to provide in the operating
system, because an intruder may try to crash the system
to prevent the log tail from being written to stablestorage.

Some of the disadvantages of including services in
the operating system can be mitigated by re-structuring
the operating system into multiple protection domains
[19] and placing security-related services in the most-
privileged ring. This approach is similar to kernels that
include only the minimum set of services [7]. However,
this approach requires re-writing the entire operating
system, and frequent crossings between multiple
protection domains degrade performance. A different
approach is to add services to a language specific virtual
machine such as Java. However, these services would
be available only for applications written in the target
language. For the system wide services described above,
the entire system would have be written in the target
language.

6. CONCLUSIONS

Running an operating system and most applications
inside a virtual machine enables a system designer to
add services below the guest operating system. This
structure enables services to be provided without trusting
or modifying the guest operating system or the
applications. We have described three services that take
advantage of this structure: secure logging, intrusion
prevention and detection, and environment migration.
Adding services via a virtual machine is analogous to
adding network services via a firewall. Both virtual

Security in Virtual Machine is better than Real Machine 11

machines and firewalls intercept actions at a universal,
low-level interface, and both must overcome
performance and semantic-gap problems. Jut as network
firewalls have proven useful for adding network services,
we believe virtual machines will prove useful for adding
services for the entire computer.

REFERENCES
[1] Linux Kernel Version 2.2.16 Security Fixes, 2000.http://

w w w . l i n u x s e c u r i t y . c o m / a d v i s o r i e s /
slackware_advisory-481.html.

[2] VMware Virtual Machine Technology. Technical Report,
VMware, Inc., September 2000.

[3] Thomas C. Bressoud and Fred B. Schneider. “Hypervisor-
Based Fault-Tolerance”. In Proceedings of the 1995
Symposiumon Operating Systems Principles, pages 1–11,
December1995.

[4] Edouard Bugnion, Scott Devine, Kinshuk Govil, and
MendelRosenblum. Disco: Running Commodity
Operating Systemson Scalable Multiprocessors. ACM
Transactions on ComputerSystems , 15(4) : 412–447,
November 1997.

[5] Landon P. Cox and Brian D. Noble. Fluid Replication. In
Proceedings of the 2001 International Conference on
Distributed Computing Systems, April 2001.

[6] Fred Douglis and John Ousterhout. “Transparent Process
Migration: Design Alternatives and the Sprite
Implementation”. Software Practice and Experience, 21(7),
July 1991.

[7] Dawson R. Engler, M. Frans Kaashoek, and James
O’TooleJr. Exokernel : “An Operating System
Architecture for Application-level Resource
Management”. In Proceedings of the 1995 Symposium on
Operating Systems Principles, pages 251–266, December
1995.

[8] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji,
andThomas A. Longstaff. “A Sense of Self for Unix
Processes”. In Proceedings of 1996 IEEE Symposium on
Computer Security and Privacy, 1996.

[9] Ian Goldberg, David Wagner, Randi Thomas, and Eric
A.Brewer. “A Secure Environment for Untrusted Helper
Applications”. In Proceedings of the 1996 USENIX Technical
Conference, July 1996.

[10] Robert P. Goldberg. “Survey of Virtual Machine
Research”. IEEE Computer, pages 34–45, June 1974.

[11] David B. Johnson and Willy Zwaenepoel. “Sender-Based
Message Logging”. In Proceedings of the 1987
InternationalSymposium on Fault-Tolerant Computing, Pages
14–19, July 1987.

[12] Gene H. Kim and Eugene H. Spafford. “The Design and
Implementationof Tripwire: a File System Integrity
Checker”. In Proceedings of 1994 ACM Conference on
Computer and Communications Security, November 1994.

[13] Kevin Lawton. Running Multiple Operating Systems
Concurrentlyon an IA32 PC using Virtualization Techniques,
1999.http://plex86.org/research/paper.txt.

[14] M. J. Litzkow. “Remote UNIX: Turning Idle Workstations
Intocycle Servers”. In Proceedings of the Summer 1987
USENIX Technical Conference, Pages 381–384, June 1987.

[15] D. A. Nichols. “Using Idle Workstations in a Shared
Computing Environment”. In Proceedings of the 1987
Symposium on Operating System Principles, pages 5–12,
November 1987.

[16] T. Richardson, F. Bennet, G. Mapp, and A. Hopper.
Teleportingin an X Window System Environment. IEEE
PersonalCommunications, 1(3):6–12, 1994.

[17] Mark Russinovich and Bryce Cogswell. “Replay for
Concurrentnon-deterministic Shared-memory
Applications”. In Proceedingsof the 1996 Conference on
Programming Language Design and Implementation (PLDI),
Pages 258–266, May1996.

[18] Brian K. Schmidt, Monica S. Lam, and J. Duane Northcutt.
“The Interactive Performance of SLIM: a Stateless, Thin-
clientarchitecture”. In Proceedings of the 1999 Symposium
on Operating Systems Principles, Pages 32–47, December
1999.

[19] Michael D. Schroeder and Jerome H. Saltzer. “A
Hardware Architecturefor Implementing Protection
Rings”. Communications of the ACM, 15(3) : 157–170, March
1972.

[20] John D. Strunk, Garth R. Goodson, Michael
L. Scheinholtz, Craig A. N. Soules and Gregory R. Ganger.
“Self-securingstorage: Protecting Data in Compromised
Systems”. In Proceedings of the 2000 Symposium on
Operating Systems Design and Implementation (OSDI),
October 2000

www.linuxsecurity.com/advisories/
http://plex86.org/research/paper.txt

