
1. INTRODUCTION

The Extensible Markup Language (XML) is becoming the
dominant standard for exchanging data over the World
Wide Web. Due to its flexibility, XML is rapidly emerging
as the de facto standard for exchanging and querying
document on the Web. XML data is an instance of semi
structure data and XML documents comprises
hierarchically nested collections of elements represented
as a tree, where element can be either leaf node or nested
node. Due to simplicity in representation it is used in
next generation web application including electronic
commerce, intelligent web search. The different query
languages are designed for that purpose. Lorel, Quilt,
XML-GL, XPath, XQuery. Amongst XQuery is more
popular language because it is functional language. It
utilized regular path expression thus using convention
tree traversal approach for same. It also specifies patterns
of selection predicates on multiple elements that have
some specified tree structured relationship. This
relationship either parent child or ancestor-descendent
relationship. Queries in XML make fundamental use of
tree pattern for matching relevant portion of data in the
XML database. The query pattern node labels include
element tags, attribute-value comparison and string
values and the query pattern edges are either parent-
child edges.

Science XML data is a simple flat file. The data is
scattered at different locations in the disk, processing
XML queries may result in insignificant performance
degradation. Hence we developed a new approach in
which data is organized into different dictionary like path
dictionary, element dictionary and value node dictionary
index. With help of these dictionaries B+tree is

International Journal of Computer Science & CommunicationVol. 1, No. 2, July-December 2010, pp. 87-90

B+ Tree Based Indexing Scheme for FLOWR Queries on XML Databases

Anagha Vaidya1 & Arpita Gopal2

1,2Sinhgad Institute of Business Administration & Research, Kondhwa(Bk.),Pune- 411048
Email: 1anagha_vv@yahoo.co.in, 2directormca_sibar@sinhgad.edu

ABSTRACT
XML is emerging as a de facto standard for information exchange over internet. To perform this task different languages
are developed among them XPath and superset XQuery is popular language. XQuery is a strongly typed, functional
language which supports the common processing and querying tasks. XQuery uses the label paths to traverse the
irregular structure data. Without structural summary and efficient indexes, query processing can be quite inefficient
due to exhaustive traversal on XML data. This paper presents an m-array based indexing scheme for efficient retrieval
on FLOWR queries on XML databases. The proposed technique stores path dictionary, element dictionary and value
node dictionary using B+tree structure. With help of this method we can access database quickly and effectively.
Keywords: FLOWR, XML, m-way search, B+tree

developed. By using this B+tree query search
performance is improved.

This paper is organized as follows: Literature Review
is described in section 2.The structure of Proposed model
is explained in section 3. Section 4 explain example of
proposed technique. Querying on XML data is depicted
in section 5. Conclusion and future scope is explain in
section 6.

2. EXISTING WORK

Depending on the context implementation of XQuery/
XPath various implementation and optimization
techniques are used. One of the techniques is index.
Indexes are pre built on XML data which facilitate XML
query processing. XML indexes are classified into two
types - value index and structural index. In ‘value index’
indexes are created on data values in XML document
and in structural index the index are created on the
structural relationship. The major contribution on the
indices technique is by Path index[10], Data guide[16],
Index family[19], forward and Backward index[8],
A(k)[17], D (K) indices[14] and APEXindex[2]. Index
technique has problem of index size, index computational
cost and index updatability. This problem can be
overcome by ‘numbering schema ‘technique. Numbering
Schema explain the hierarchical relationship presented
in XML tree. It is classified into prefix labeling schema
and range labeling schema. Dietz [13] introduced “Tree
traversal schema”, Li and Moon [15] proposed a
numbering schema. Kimber [20] proposed “tree location
address”.

XML algebra is also used for query optimization. It
provides semantic analysis of query and performs

mailto:1anagha_vv@yahoo.co.in
mailto:2directormca_sibar@sinhgad.eduABSTRACT

International Journal of Computer Science & Communication (IJCSC)88

optimization. There are many different approaches are
developed in designing algebra some of them XAL [4],
Tree Algebra for XML (TAX)[7],Generalized tree pattern
(GTP), Tree Logical Class (TLC), Nested XML Tableaux
(NEXT), BiRD[5].

Relational approach, native approach, sequence
approach are used for query processing and optimizing
data. In relational approach XML data is converted into
relational table and query processing is performed by
using relational optimizer. Edge[3], Path Materialization
algorithms[9] are different algorithm developed for same.
In the native approach XML data are stored on disk in
the form of inverted lists , sequences or trees and native
algorithms are developed for query processing
MPMGJN[22], Stack Tree [1], Holistic Join[18], Twing
Stak solution are algorithm for native approach. ViST[6]
and PRIX[12] technique introduced sequential approach
. By using ‘virtual tries’ technique the data tree is encoded
and query is optimized.

3. THE STRUCTURE OF PROPOSED MODEL

We now introduce an m-array based indexing scheme
for efficient retrieval on FLOWR queries on XML
databases. The proposed technique stores path
dictionary, element dictionary and value node dictionary
using B+tree structure. Overall structure of the technique
is presented in following figure

The technique generates a Path dictionary, Element
dictionary and value node dictionary. With help of
element dictionary we generate B+tree structure which
organized the all nodes of XML files into sorted order.
M-way search can perform on this B+tree . The general
algorithm is described as:

Step1: Generate the Path Dictionary.

Step2: Generate the Element Dictionary.

Step3: Generate Value node Dictionary.

Step4: Generate B+ tree.

Step5: Querying on XML database.

The detailed algorithm is as follows.

Step 1
Generate the Path Dictionary: It is a two-dimensional
array as shown in table1. The first column of the table
store Path name and in second column it store path
expressions of XML document. When query is executed
the existence of path is checked by this table.

Step 2
Generate the Element Dictionary: This is one
dimensional character array and store the all element
node from second level of the tree. In table2 all element
nodes are store.

Step 3
Generate Value NodeDictionary: This is a two-
dimensional array. As shown in table3, the first column
indicate the new node value. Second column store
element node string and third column store the
corresponding values of the node. It also support in query
‘return clause’ for retrieval of XML node information.

Step 4
Generate B+ Tree: A B+ tree of order m is an m-way

search tree that either empty or contain index node and
data element node. The tree has ‘m’ sub tree and satisfy
following property [23]

n , A0(K1, A1),(K2,A2),……….(Kn,An)

Where the Ai , 0 <= i <= n <m, are pointers to sub
trees, and Ki, 1<= i <=n <m are keys be the format of
some index node. All elements in the subtree Ai have
key less than Ki+1 and greater than or equal to Ki , 0 <=
i < = n.

In proposed model ‘m’ is calculated from total
number of element present in Element Dictionary. Key
values are values of Element Dictionary. Element nodes
of the b+tree are the address of the Value Node
Dictionary . It store the entire value of the node.e.g.
v[0]..v[2] store all the value of a node . New node
identification is perform by New node column. If it
contain “Y” value means from that node a new node is
start.

B+ Tree Based Indexing Scheme for FLOWR Queries on XML Databases 89

Step 5: Querying on XML Database

The technique supports FLOWR queries on XML
databases. The algorithm is:-

1 : Retrieve the query path from for clause.

2 : Search the “query path” into Path dictionary.

3 : If path exist

3.1 : Identify the predicates. i.e from where clause
identify the search element

3.2 : From that predicate retrieve the element
node from b+ tree.

3.3 : The Element node provides the address of
“Vale node table”.

3.4 : From Value node table get the value node
information.

3.5 : From “return clause identify” the return
node string . Match this string with
 token column in value node table. And the
retrieve respective node.

3.6 : Print the value .

4 : Else print the message “node doesn’t exit’

4. Example of proposed technique:

Let’s consider XML file example :

<?xml version=”1.0" encoding=”ISO-8859-1"?>

<bookstore>

<book category=”computer”>

 <title lang=”en”>MIS</title>

 <author>Arpita </author>

 <year>2007</year>

 <price>300.00</price>

</book>

<book category=”XML”>

 <title lang=”en”>XQuery Processing </
title>

 <author>

 <fname>Anagha</fname>

 <lname>Vaidya</lname>

 </author>

 <year>2003</year>

 <price>149.99</price>

</book>

 </bookstore>

Step1: Generate Path Dictionary:

Table1
Path Dictionary

Path Name Path address

P1 /bookstore/book
P2 /bookstore/book/title
P3 /bookstore/book/author
P4 /bookstore/book/year
P5 /bookstore/book/price
P6 /bookstore/book/author/fname
P7 /bookstore/book/authtor/lname

Step 2: Generate Element Dictionary

Table 2
Element Dictionary

title price year Author Fname lname

Step 3: Generate Value Node Dictionary

Table 3
Value Node Dictionary

New node Token Value information

Y year 2003
N title MIS
N lname Vaidya
Y year 2009
N price 300
N fname Arpita
N title XQuery Processing
N price 49.99

Step 4: Generate B+tree

Step 5: Querying on XML database:

Let’s consider example

Query : For $x in (bookstore.xml)/bookstore/book

where $x /price >30

return $x /title

The for clause selects all book elements. The path
address is “bpookstore/book/” which is store into a
variable “$x”. According to indexing method the value
of $x is check in Path Dictionary . If Path exist then read

International Journal of Computer Science & Communication (IJCSC)90

the variable of “ where” clause. In our example the
“Price” element will be read . Then in the b+tree, search
is performed on the node ‘Price’ and respective “Element
Node” array is retrieve. The element nodes store the
address of Value Dictionary Node. E.g. in example price
value which is less than 30 the information is store into
‘Value Dictionary Node” v[9] till v[11], v[13] till v[15].
The return clause specifies name of return node. In out
example we want to return “title”. This string will match
with token string of retrieved “Value Dictionary Node”
node. The proper node information will be display.

6. CONCLUSION AND FUTURE WORK

In this paper we have proposed a novel algorithm for
storing XML data file. With help of this method we can
access database quickly and effectively. Method handles
simple XQuery , range query processing also . In this
algorithm do not consider of handling the ‘ordered
clause’ and nested queries In future we come up with a
set of optimization methods handle these and improve
performance.

REFERENCES
[1] C. Zhang, J.F. Naughton, D.J. DeWitt, Q. Luo, and G.M.

Lohman, [2001]: “On Supporting Containment Queries
in Relational Database Management Systems,” Proc. 20th
ACM SIGMOD Int’l Conf. Management of Data (SIGMOD
’01).

[2] C.W. Chung, J.K. Min, K. Shim [2002] “APEX : An
Adaptive Path Index for XML data”, ACM SIGMOD pp.
121-132.

[3] D. Florescu and D. Kossmann ,[1999]: “Storing and
Querying XML Data Using an RDMBS,” IEEE Data Eng.
Bull., 22, pp. 27-34.

[4] F. Frasincar, G.-J. Houben, and C. Pau. XAL [2002] : “An
Algebra for XML Query Optimization”, In ADC 2002,
Melbourne, Australia, ACS.

[5] F. Weigel, K.U. Schulz, and H. Meuss, [2005] : “The BIRD
Numbering Scheme for XML and Tree Databases—
Deciding and Reconstructing Tree Relations Using
Efficient Arithmetic.

[6] H. Wang, S. Park, W. Fan, and P.S. Yu,[2003]: “ViST: A
Dynamic Index Method for Querying XML Data by Tree
Structures,” Proc. 29 th ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’03).

[7] H.V. Jagadish, L.V.S. Lakshmanan, D. Srivastava, and
K. Thompson, [2001]: “TAX: A Tree Algebra for XML,”
Proc. Eighth Int’l Workshop Databases and Programming
Languages (DBPL 1).

[8] Kaushik R., Bohannon P., Naughton J. F., Korth
H. F.[2002] : Covering Indexes for Branching PathQueries,
ACM SIGMOD.

[9] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura,
“XRel: A Path-Based Approach to Storage and Retrieval
of XML Documents Using Relational Databases,” ACM
Trans. Internet Technology, 1, pp. 110-141, 2001.

[10] McHugh J., widom J. , Abiteboul S.,Luo Q.., Rajaraman
A.[1999] : Index Semistructure Data Technical Report,
Srandford University.

[11] N. Bruno, N. Koudas, and D. Srivastava, [2002]”: Holistic
Twig Joins: Optimal XML Pattern Matching,” Proc. 21st
ACM GMOD Int’l Conf. Management of Data (SIGMOD
’02).

[12] P. Rao and B. Moon,[2004]: “PRIX: Indexing and
Querying XML Using Prufer Sequences,” Proc. 20th IEEE
Int’l Conf. Data Eng. (ICDE ’04).

[13] P.F. Dietz, [1982] : ”Maintaining Order in a Linked List”,
Proceeding of the 14th Annual ACM Symposium on Theory
of Computing, pp. 122-127.

[14] Q. Chen, A. Lim, K. Ong, and J. Tang,[2003] “D(k)-index:
An Adaptive Structural Summary for Graph Structured
Data”, Proceedings of the ACM SIGMOD, pp. 134–144.

[15] Q. Li & B. Moon, [2001]: “Indexing and Querying XML
Data for Regular Path Expressions”, Proceeding of 27th
VLDB Conference, pp. 361-370.

[16] R. Goldman & J. Widom,[1997] “Data Guides : Enabling
Query Formulationand Optimization in Semistructured
Database”, Proceeding of VLDB , pp. 436-445.

[17] R. Kaushik, D. Shenoy, P. Bohannon, E. Gudes, [2002]
“Exploiting Local Similarity to Efficiently Index Paths in
Graph-Structured Data”, Proceeding of Int. Conference on
Data Engineering, pp. 129-140.

[18] S. Al-Khalifa, H.V. Jagadish, N. Koudas, J.M. Patel,
D. Srivastava, and Y. Wu[2002]: , “Structural Joins: A
Primitive for Efficient XML Query Pattern Matching,”
Proc. 18th IEEE Int’l Conf. Data Eng. (ICDE ’02).

[19] T. Milo & D. Suciu, [1999], “Index Structures for Path
Expression”, Proceeding of 7th Int. Conference on Database
Theory, pp. 277-295.

[20] W.E Kimber,[1993]: “HyTime and SGML : Understanding
the HyTime HYQ Query Language”, Technical Report
Version 1.1, IBM Corporation.

[21] XQuery 1.0: An XML Query Language W3C
Recommendation 23 January 2007.

[22] Z. Chen, H.V. Jagadish, L.V.S. Lakshmanan, and
S. Paparizos,[2003]: “From Tree Patterns to Generalized
Tree Patterns: On Efficient Evaluation of XQuery,” Proc.
29th Int’l Conf. Very Large Data Bases (VLDB ’03).

[23] Horowitz. Sahani. Anderson-Freed “Fundamentals Of
Data Structures in C” University Press 2008.

