
1. INTRODUCTION

“Lift” is the most commonly used metric to measure the
performance of targeting models. The purpose of
targeting model is to identify a subgroup from a larger
population. Generally, lift can be calculated by looking
at the cumulative targets captured up to p% as a
percentage of all targets and dividing by p% ie., Lift is
simply the ratio of target response divided by average
response.[1].

In this paper we present a computationally efficient
algorithm to find the Discounted Cumulative Gain
(DCG) using Lift. This modified DCG using lift may plays
an efficient role in other DCG applications.

2. DISCOUNTED CUMULATIVE GAIN (DCG)

Discounted Cumulative Gain (DCG) is a measure of
effectiveness of a web search engine algorithm or related
applications often used in information retrieval [2]. Using
a graded relevance scale of documents in a search engine
result set, DCG measures the usefulness, or gain, of a
document based on its position in the result list. The DCG
is given by
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1 2

2 1
log (1 )

p reli

i i=

−
+∑

3. MODIFIED DISCOUNTED CUMULATIVE GAIN (MDCG)

3.1. Lift
Lift is the statistical definition of dependence of two sets
A and B which is given by
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with the obvious extensions to more than two sets [3].

Lift originally called Interest, was first introduced
by Motwani, et al., (1997), it measures the number of
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times X and Y occur together compared to the expected
number of times if they were statistically independent.[4]

The Lift can also be framed as a function of
confidence [5]
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Where

Support of a graph is given by [6]

In a given graph FG, the support FG
S is defined as

number of graph transactionsF
( )

total number of graph transactions
G

G SSup F F= =

And confidence is given by [6]

Given two induced subgraph Fb and Fh,  the
confidence of the association rule

Fb ⇒ Fh is defined as
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By this conviction, Lift is obviously monotone in
confidence and unaffected by rule support when
confidence is held fixed.
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In the case of subgraph architecture, lift can be
defined as

( ) number of graph of and ( )
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The relationship of X and Y are defined by the lift as:

i) lift value > 1 then X and Y depend on each other
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ii) lift value < 1 then X depends on the absence of Y
or vice-versa

iii) lift value close to 1 then X and Y are independent.

3.2. Modified Discounted Cumulative Gain (MDCG)
The premise of DCG is that highly relevant documents
appearing lower in a search result list should be
penalized as the graded relevance value is reduced
logarithmically proportional to the position of the result.
Here, the new measure called ‘lift” is applied to the DCG.
Then the Modified Discounted Cumulative Gain
accumulated at a particular rank position p is defined
as:
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There has not been shown any theoretically sound

justification for using a logarithmic reduction factor [7]
other than the fact that it produces a smooth reduction.
An alternative formulation of MDCG places much
stronger emphasis on retrieving relevant documents
ranked higher using a power distribution and is
formulated as :
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3.3.Algorithm for Modified Discounted
Cumulative Gain

Input : Graphs F1, F2, …. Fk-2

Output : Modified Discounted Cumulative Gain

Step 1 : Construct the rules for the given sub graph

Step 2 : Calculate the Lift value for each subgraph
such that

The relationship of X and Y are defined by the lift
through the condition

i) if lift value > 1 then X and Y depend on each
other

ii) if lift value < 1 then X depends on the absence of
Y or vice-versa

iii) if lift value close to 1 then X and Y are
independent.

Step 3: Then calculate the MDCG value such as
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Construction of Rule
In a given graph FG, the support FG

S is defined as

number of graph transactionsF
( )

total number of graph transactions
G

G SSup F F= =

Given two induced subgraph Fb and Fh,  the
confidence of the association rule

Fb ⇒ Fh is defined as
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If the value of sup(FG) is more than a threshold value
minsup, FG is called as frequent induced subgraph.

3.4. Example for the Algorithm
Consider the following graph data set.

Fig. 1

The number of frequent subgraphs are :

Fig. 2

Here the subgraphs listed are F1, F2, …. F7 [8]

Some sample “lift” values are calculated according
to the subgraphs in Fig – 2. The P(X) and P(Y) are taken
for six rules that is labeled as R1, R2 …. R6.

Rules P(X) P(Y)

R1 W → W → W –– R
R2 W → W –– R → R
R3 R → W –– W → R
R4 W → W –– R
R5 W → W –– W
R6 R → W –– W

MDCG Table
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i Rule lift Log i Lift/Log i MDCG

1 R1 0.037037037 0 0 0.037037037
2 R2 0.090909091 1 0.090909091 0.127946128
3 R3 0.027777778 1.584962501 0.017525826 0.145471954
4 R4 0.070707071 2 0.035353535 0.18082549
5 R5 0.016042781 2.321928095 0.00690925 0.187734739
6 R6 0.045751634 2.584962501 0.017699148 0.205433887

4. RESULTS AND DISCUSSION

This sample was from the data set of chemical compound
and synthetic data set. The complete summary of result
are as follows :

Here seven frequent subgraphs are considered with
the threshold value of σ = 66%. The rule for frequent
subgraph are then applied to find out the new measure
‘lift’ then the value of lift at each position of the rule is
taken into the calculation to find out the MDCG. All
MDCG calculations are then relative value on the interval
0.0 to 1.0 and so are cross-query comparable. Hence the
MDCG value at each step may be efficient in other
applications instead of DCG.
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