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This paper presents a computational study on the performance of reliability measures by using optimized ANN for
computer networks with fixed and varying link reliabilities. This paper focus on the design of minimum cost
reliable computer networks when a set of nodes, their topology, and links are given to connect them. A comparative
study of various approaches for evaluating reliabilities has been studied such as Monte Carlo simulation methods
and upper and lower bounds to bound reliability. The network design problem is difficult when overall reliability
measure is considered through these methods. The objective is to design a minimum cost reliable networks that
meets minimum reliability requirements. Therefore, for optimal network design, an optimized ANN is used for
reliability measures. An optimal ANN is constructed, trained and validated using topologies, fixed and varying
link reliabilities, and upper-bound on reliability as inputs to produce overall reliability as output.
Keyword: Computer Networks, Link reliabilities, Optimized ANN, Network reliability, Upper-bound,
Lower-bound.

1.  INTRODUCTION
The measurement of overall reliability in computer
networks of growing size is NP—hard problem, the
computational effort required is growing exponentially
with growing network size [4, 10, 25] in terms of nodes
and links in the network. An optimal network design is
also difficult as it requires reliability calculation for each
topology. The objective of this proposal is to design an
optimal computer networks that have minimum costs and
minimum reliability requirement and is relevant for many
real world applications such as in design of
telecommunication networks [9, 26, 31], computer
networks [16, 17, 19], oil and gas lines [22], water systems
[24]. The purpose is to construct an optimal network
design when number of nodes, their topology, and links
are given to connect them.

An optimized ANN [41] consists of: A general neural
network scans all possible network topologies on given
number of nodes for reliability measures then a
specialized neural network for highly reliable network
design is considered [33—45]. Both neural networks with
fixed and varying link reliabilities re studied in [33—38,
41]. Results are grouped using cross-validation method
show that the optimized ANN gives precise measures for
reliability than the upper-bound [29, 32] and Monte-carlo
simulation method [11, 20]. Results shows that the

optimized ANN produces optimal network designs and
reliability measures at reasonable computational cost.

1.1 Problem Definition
This paper discuss the problem of how to design growing
computer networks so that cost and reliability is optimized.
The design problem solved by optimized ANN [32, 33, 36,
39—45] is significant of real design problems. Cost and
reliabilities (links) are two important considerations when
designing a real world networks which is applicable in
many industrial applications such as WAN, LAN, and
data networks in industrial facility. In any network design,
following are the problem assumptions must be
considered.

1. Location of each network node is given.
2. Nodes are perfectly reliable.
3. Link costs and reliability are fixed and known.
4. Each link is bi-directional.
5. There are no redundant links in the network.
6. Links are either operational or failed.
7. Failure of links is independent of network design.
8. No repair is considered.

The design optimization problem for a minimum cost
networks that meets minimum reliability requirement can
be expressed mathematically as follows:
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Where N is the number of nodes; (i, j) is the link
between nodes i and j; Xij is the decision variable, Xij   {0,
1} for networks with fixed reliability; X is the link topology
of X12,  …, Xij, …., XN – 1, …, N; R (X) is the reliability of X; RO
is the network reliability requirement; Z is the objective
function and Cij is the cost between (i, j).

The complexity of possible network topology in terms
of space size complexity is given

(| | (| |) 1)
2

N NK × −
(2)

Where K is the choices for the links is to be connected
in the growing networks. For fixed links, there are always
two choices – 0 for no link present and 1 for link present –
between any pair of nodes i and j. For varying link, we
can choose a single link connecting two link or two nodes
or more. There are several design options. For example, a
10 node network (N = 10) with fixed links (k = 2) has 3.5 *
1013 possible designs. A network with (N = 10) and with
(K = 5) varying links choices has 1035 possible designs
[32–38]. For a growing network size, it is practically
difficult to calculate the exact network reliability.
Therefore, an optimization procedure must be used to
calculate exact reliability.

The design of network is difficult when overall
reliability is considered. It is defined as the probability
that all nodes communicate with every other nodes. The
reliability is defined as p, and a non-zero reliability is q =
1 – p, at any time, only some links in a topology X may be
operational. A state of a topology X is represented by a
sub-graph (N, X’), where X’ represents set of operational
specific links such that X’ ⊆ X. The network reliability for
the state graph X’ ⊆ X is given by:

R (X) = ' ( ')( ) ( )j x j j x x jp x q xΩ ∈ ∈   Σ Π Π    (3)

Where Ω = all operational states in the state graph.
Another objective is to minimize the cost of the

network design problem from Eq. (1). Costs can include
material costs of the cabling, installations costs such as
trenching or boring, purchase of land or right way costs,
and connection or terminal costs. These costs are assumed
as unit costs because they depend on the length of the
links. In many literature, cost is assumed as fixed
weights [6, 9].

There are two main reliability measures have been
studied, all-terminal (also called overall reliability) and
source-sink (two-terminal reliability). The overall network
reliability is concerned with the ability of each and every
network node to be able to communicate with every other
nodes in the network through some non-specified path.

This means that network must form at least a minimum
spanning tree. The two-terminal reliability is concerned
with the ability of source node (pre-specified) to
communicate with the sink node (also pre-specified)
through some non-specified path. The problem of
measuring the reliability in computer network design is
an active area of research. There are four approaches have
been discussed in the literature - exact calculation through
analytic methods, estimation through variations of
Monte-carlo simulations [11, 20], upper or lower bounds
of reliability [29, 32], and easily calculated direct method
for reliability[33]. The issue of measuring reliability of
network is so important for optimal design of
computer network.

The most common objective is to design a computer
by selecting a subset of possible links so that network
reliability is maximized and maximum cost constrained
is met. But, in many situations, it makes more sense is to
minimize cost subject to a minimum network reliability
constraint which can be can measured from Eq. (3). There
are some other constraints mentioned in the literature,
such as minimum node degree or maximum links length
allowed in the network. The objective of this proposal is
to find the minimum cost network architecture that meets
pre-specified minimum network reliability. The equation
for the objective is given as follows:

Min: C (X)

That is

0( )R X R≥ (4)

2. PRESENT WORK
This proposal explain the various steps for measuring
reliability in growing with fixed and varying connections
using optimized ANN.

2.1 Neural Networks for Reliability Measures
Artificial neural network [15, 21] is used as a function
approximation or a non-linear estimation technique
which takes set of input values and it produces an
output value.

In this paper, ANN are developed, trained, based on
the overall terminals reliability of a very small set of
possible network topologies and link reliabilities, for a
given number of nodes. The resulting ANN is used to
estimate network reliability as a function of the link
reliabilities and the topology during search for the optimal
design. In this way, estimates of the reliability of numerous
topologies are available without costly calculation
or simulation.

A disadvantage of using ANN as a reliability
evaluator is that the reliability prediction is only an
estimate that may be subject to bias and/or variance
depending on the adequacy of the ANN [15, 21]. The
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functionality of using an ANN estimation of reliability
during optimal network design is tested by comparing
it to an easily calculated upper-bound and
a computationally expensive exact calculation.

2.2 An Optimal Design of Neural Network

An optimal design of ANN [41] is considered here which
is divided into two stages: experimental condition setup
and optimization process as shown in Fig. 1. In optimized
ANN, training of neural networks is iterated until a given
condition is satisfied. The ANN process consists of nine
steps, as described below:

Fig. 1: Algorithm for Designing an Optimal Neural Network

In this paper, an experimental setup is done for
optimizing the design of an ANN [41] which is described
in the above algorithm. Experiment is based on fractional
factorial experiments and uses orthogonal arrays
efficiently. In complete experimental setup, all
combinations of design parameter levels are tried, so the
number of combinations increases exponentially with the
number of design parameters increases.

This experiment deals with experimental results
including errors due to ANOVA. ANOVA gives
information on factorial effects and experimental error,
i.e., error unrelated to any factor. Confidence of
optimization is evaluated by the magnitude of
experimental error, so Design of Optimization [41]
optimizes design of ANN architecture and ensures its
effectiveness. Table 1 shows an orthogonal array in which
the number of design parameters (shown in column) is 5,
the number of levels is 4, and the number of experiments
(row) is 16. The table is denoted by L16 (45).

Table 1
Orthogonal array L16(4

5)

No. Column
1 2 3 4 5

1 1 1 1 1 1
2 1 2 2 2 2
3 1 3 3 3 3
4 1 4 4 4 4
5 2 1 2 3 4
6 2 2 1 4 3
7 2 3 4 1 2
8 2 4 3 2 1
9 3 1 3 4 2
10 3 2 4 3 1
11 3 3 1 2 4
12 3 4 2 1 3
13 4 1 4 2 3
14 4 2 3 1 4
15 4 3 2 4 1
16 4 4 1 3 2

Fig. 2: The Design Approach for Optimizing ANN
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The 5 columns to the right indicate combinations of
levels of design parameters. In this experimental setup
with orthogonal array, 16 experiments with different
combinations of parameter levels are conducted. For
example, consider 5 parameters be a, b, c, d, and e,
corresponds to 5 columns in Table 1. Each parameter in
the Table has 4 levels. For example, The levels for
parameter a are defined as a1, a2, a3, and a4. The
combinations of level in experiment is as follows (a1, b1, c1,
d1, e1) is (1, 1, 1, 1, 1). The experiment will be repeated with
all level of combinations.

This experiment performs 64 trials, to measure an
optimal levels of design. In full fractional experimental
setup, the total trials taken are 1.7 × 1010 from [41] that
reduces time as compared to previous method.

2.3 Training and Validation of Optimized ANN
A back-propagation training algorithm [1, 38, 39] was
selected because of its powerful approximation capacity
and its applicability to both binary and continuous inputs.
The back-propagation algorithm minimizes the squared
error between the ANN output and the target. A hyperbolic
activation function was used in all neurons to set the
learning rate of hidden neurons and a learning rate for
output neurons.

A standard ANN software package, neural works
explorer [30], was used to perform training and validation
of neural networks for: Networks with fixed and varying
link reliabilities. After preliminary experiments, the
architecture of ANN consists of 107, 70, and 1 neurons in
input, hidden and output layers, respectively. The ANN
models were trained for 300000 epochs, that is 300000
passes through the training set, with the normalized
cumulative delta rule (learning rule) with 0.30 and 0.15
learning coefficients for the hidden layer and output layer,
respectively, using Neuralworks Explorer software
package [30].

All data sets are divided into five subsets to use the
five-fold cross validation technique. The five-fold
validation ANN used 4/5 of the data set for training and
the remaining 1/5 data set for testing, where the testing
set changed with each validation of ANN. A final
application ANN is trained using all members of the data
sets for each network size and its validation is inferred
using the five-fold cross validation of ANN. This cross
validation approach provides an unbiased and quite
precise measurement of ANN performance on the
population of network topologies.

3. COMPUTATIONAL PROCEDURE
3.1 Networks with Fixed Link Reliabilities
The problem of measuring reliability can be simplified by
limiting the links chosen in a network topology with same
reliability i.e., with K = 2, because the number of possible
topologies grows exponentially with increase in K (refer

to (1)). In this case, if Xij = 1, the link is chosen for the
network topology and if Xij = 0, no link is present. To
make the ANN more applicable to a variety of design
problems, five different values of link reliability were
chosen to be included in a single ANN.

The inputs to the ANN were:
1. The architecture of the network as indicated by a

series of binary variables (Xij).
2. The length of the string of 0’s and 1’s is equal to

(N (N – 1))/2.
3. The link reliability is chosen in between 0 and 1

may be (0.80, 0.85, 0.90, 0.95, 0.99).
4. The calculated upper-bound of network reliability

using the method of [29, 32-33].
The upper-bound for reliability calculation is

significantly improved using the Eq. (5) from [29, 32-33]
is given below:
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Where mi = min (di, i – 1), i = 1, 2, …, N, R (G) : Reliability
of G, p, q: Reliability and unreliability of a link; p + q ≡ 1,
and di : the degree of (the number of links incident on)
node i.

The output of the optimized ANN will be the overall
reliability measurement for the computer networks. Here,
we present the comparison of the measurement of
reliability of each network topologies using Monte-carlo
sampling method [11, 20] with the optimized ANN
method [41]. The Monte Carlo algorithm and sampling
plans is divided into two algorithms called NFA and
BETA procedure as discussed in [11, 20] and shown in
Figures 2-4. The steps of Monte Carlo algorithm as follows:
first, NFA procedure is called to generate the probability
distribution of the number of failed arcs (P[n=k]; k=0, ..,
N), then, BETA procedure is called m times (m=3000) in a
loop to simulate βk values depending on whether the
topology instance is fully connected or not, for every
instance with k number of failed arcs from 0 to N. Next,
Rj (G) values are computed for each j=0,..m. Finally, the
reliability is estimated as the mean of Rj (G) values.

Where; N: the number of links, R (G) : the reliability
estimator of R (G), Rj (G) : the reliability estimation value
for j = 1, 2,., m, and n : the total number of failed arcs.

Data sets were generated using two different
approaches [38]; random design and experimental design,
which are explained as follows.

(a) Random design 1: The training data set called D1
includes equal number of network topologies for each link
reliability. A stochastic depth-first search algorithm is used
to build a spanning tree. Since it is possible to obtain
n(n – 2) spanning trees from a fully connected network, a
sub set of different kinds of networks can be easily
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generated using the stochastic depth-first search
algorithm [19, 28].

(b) Random Design 2: In this approach, the training
data set called D2 is generated considering a
predetermined number of network topologies for intervals
of each system reliability, as given in Table 2. A stochastic
depth-first search algorithm was also used to generate
network topologies as in D1.

(c) Experimental Design:  To obtain more
representative data sets of the problem space an
experimental design approach is used considering
connectivity and link reliability together as design points
to generate training data sets. It is obvious that system
reliability increases with increasing connectivity.
Connectivity is the minimum number of links or nodes
that must be removed from a network to break all paths
between any pair of nodes [1-3]. Preliminary experiments
showed that the network reliability is very close to 1 if the
networks have five connectivity or more. Therefore, two
different data sets, D3 and D4, with up to four connectivity
and five, respectively, are generated. An equal number of
network topologies is generated for each level of network
connectivity. The sizes of D3 and D4 are as the same as
D1 and D2 (1250 total). The labeling algorithm given in
[17-19] is used to check the network connectivity for each
generated network in these data sets.

3.2 Networks with Varying Link Reliabilities
A real world problem consideration is to allow links of
varying reliability within a network topology. This greatly
expand the number of possible topologies of a network,
also complicates the network design problem and
computation of overall reliability of network. For real world
example, consider a network with links value is K = 6,
that is, network can take any five reliability value or 0,
which indicates that link is not present. For further
clarification, for any network design problems, we can
use any of five link reliabilities in any combination.

The inputs to ANN are:
1. The architecture of network is given by a series of

real-value variables (Xij).
2. The length of string is given by (N (N – 1))/2.
3. The Konak and Smith [29, 32] method is used to

calculate the upper-bound reliability.
The upper-bound for reliability calculation is

significantly improved using the Eq. (6) from [29, 32] is
given below:
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Where p is the reliability of a link and E is the set of
links connected to a given node. The output of the ANN

will be the measurement of overall network reliability.
The target network reliability of each network is estimated
using the Monte Carlo method which was explained in
Section 3.1. The network designs for varying link
reliabilities are generated using the same manner used
for generating the fixed data sets and also named the
same, D1, D2, D3 and D4. The reliability value of each link
in a network is used as an input. For example, (0, 0.80,
0, 0.85, 0.95, 0.95, 0.99) can be a representation of a network
topology. This representation results in 301 for a 25
node network.

4. COMPUTATIONAL RESULTS
4.1 Networks with Fixed Link Reliabilities
Table 3 gives five-fold cross validation results in root
mean squared error (RMSE) for the ANN models built
with the data sets with homogenous link reliabilities. The
error, which is used to calculate 0.0000* difference between
Monte Carlo and ANN estimations of the network
reliability. When the RMSE columns of training and testing
sets are examined, it can be seen that the ANN models
built with D4 generate minimum average RMSE values of
0.02809 on the training, and 0.03639 on the testing sets.
Ordering all data sets from the best to the worst according
to their average RMSE values of testing sets, the sequence
of D4, D3, D1, D2 is obtained. Upper-bound RMSE
columns represent the RMSE of the upper-bound only
(no ANN estimation) on the testing sets. It can also be
seen that the ANN always improve upon the
upper-bound estimates.

A statistical analysis is applied to test whether there
are statistically significant differences between final ANN
models of different pairs of data sets according to MAE.
Since the homogeneity of variances and normality
assumptions for the ANN models were not satisfied, the
Kruskal-Wallis test [15], a nonparametric version of the
ANOVA (Ana [38, 41]), is used. Based on the test there are
significant differences between ANN models with a p
value of < 0.000 at α = 0.05 [38]. Table 4 shows pairs,
mean differences and p values. As shown in this table
that there are no statistically significant differences
between the optimized ANN models built with D4 and
D3, while other pairs are statistically significantly
different [38, 41].

4.2 Networks with Varying Link Reliabilities
Similar comparisons and tests were carried out for
networks with non-uniform link reliability to determine
the effects of data sets for the ANN performance. Table 3
shows that the ANN models built with the D4 data set
generate minimum average RMSE values of 0.03608 and
0.04510 on the training and testing sets, respectively.
When data sets are ordered from the best to the worst
according to their average RMSE values of testing sets,
the sequence of D4, D3, D1, D2 is obtained. It is also shown
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that each ANN model estimation always improves upon
the upper-bound estimates, sometimes significantly for
this hard problem. It is found that there are significant
differences between ANN models with a p value of < 0.000
at α = 0.05 according to the Kruskal-Wallis test [15, 38,
41]. Because of the significant differences of the optimized
ANN models according to MAE, comparisons between
pairs of them were carried out using the sequence of D4,
D3, D1, and D2. Table 4 shows pairs, mean differences
and p-values at α = 0.01. While there are no statistically
significant difference between ANN models built on D1
and D2, other pairs are statistically significantly
different [38].

According to these results the training data set
generated considering up to five connectivity and link
reliabilities exhibits the best performance. It can be seen
that the ANN models give unbiased results very close to
the Monte Carlo results. A statistical analysis based on
the 7450 test observations considering the final ANN
model shows that the ANN estimations are statistically
closer to the Monte Carlo estimations than the
upper-bound. Paired t tests between the ANN, the Monte
Carlo method, the upper bound and the lower bound
method is compared. The Monte Carlo method had a
p-value of 0.829 and has a value with a mean difference of
– 2.18 × 10–4 and a p value < 0.0000 and mean difference
of 0.0316, respectively [38].

Table 2
Distribution of Data Set D1

Reliability

Network 0.80 0.85 0.90 0.95 0.99 TNN*
G = (25, 300) 850 850 850 850 850 7450

Table 3
Distribution of Data Set D2

System Reliability

Network 0.80 0.85 0.90 0.95 0.99 TNN*
G = (25, 300) 425 425 425 425 425 7450

TNN*: Total number of networks in the data set.

Fig. 3: Monte Carlo Algorithm

Fig. 4: The NFA Procedure

Table 4
 Five-fold Cross Validation Results for Static and Variable Connections

Fixed Link Reliability Varying Link Reliability

Experiment G = (25, 300) G = (25, 300)
Different RMSE RMSE
Data sets Training Testing Upper-bound Training Testing Upper-bound

Results for D1
1 0.03260 0.04201 0.07272 0.04774 0.06066 0.09277
2 0.03337 0.03937 0.07034 0.04944 0.05041 0.08848
3 0.03279 0.03995 0.06863 0.04966 0.05425 0.08439
4 0.03465 0.03935 0.07301 0.05056 0.05248 0.08362
5 0.03377 0.03603 0.06307 0.04857 0.05725 0.08916
Average 0.03343 0.03934 0.06955 0.04919 0.05501 0.08768

Results for D2

1 0.04505 0.05279 0.07661 0.05152 0.06059 0.09947
2 0.03722 0.04815 0.08575 0.05247 0.05788 0.09095
3 0.03876 0.04036 0.07011 0.05132 0.05777 0.09979

Table Contd
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5. CONCLUSIONS AND DISCUSSIONS
This paper proposed optimized ANN models [41] as an
alternative way to measure the overall network reliability
for computer networks. This model is developed and tested
for 25 nodes with fixed and varying link reliabilities. The
data sets used in this study in training of optimized ANN
models generated with two approaches: random design
and design of experiment (DOE) or experimental design
[38, 41]. The results show that optimized ANN models
built with the data generated by experimental design
considering connectivity and link reliability produce more
accurate results than those developed by random design
and or by experimental design considering system
reliability. The recommended approach is to use the ANN
models to measure network reliability of all candidate
designs during the topological optimization (network
design) phase. Then, the network reliability for only the
best design, or for a few good designs can be exactly
calculated. In this way, the computational efforts of exact
reliability calculation using Monte Carlo estimation can
be reduced.

The neural network approach, an upper-bound
approach and an exact backtracking calculation are
compared for network design using simulated annealing
for optimization and can be shown that the neural
network approach gives superior designs at manageable
computational cost. As future research, ANN models built
in this work will be used in the genetic algorithm and
other meta-heuristic algorithms [35, 37, 39] to obtain a
more computational efficient design optimization method
and will be applied to larger size networks.
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