
International Journal of Computer Science and Communication Vol. 2, No. 1, January-June 2011, pp. 149-152

ABSTRACT

COMPONENT INTERACTIONS FROM SOFTWARE ARCHITECTURE RECOVERY

Shivani Budhkar1 and Arpita Gopal2

1 Department of MCA, P.E.S. Modern College of Engineering, Pune-411005, India,
E-mail: shivanibudhkar@gmail.com.
2 Department of MCA, Sinhgad Institute of Business Administration and Research,
Kondhwa, Pune-411048, India, E-mail: directormca_sibar@sinhgad.edu.

In modern software engineering, Software architecture modeling plays very important role in all phases of software
development— like coding, maintenance, testing, etc. Component based software architecture is beneficial as it is
useful for reusing system parts represented as components. Most of the existing systems do not have reliable software
architecture and some legacy systems are designed without software architecture design phase. So, by doing reverse
engineering we can retrieve component based software architecture. The software architecture of the system is described
as a collection of components along with the interaction among these components, where as the main system functional
block are components, they strongly depend on connectors—which is abstraction capturing nature of these interactions.
Therefore, the project will focus on extracting connectors in component based architecture from existing object oriented
system.
Keywords: Component Based Architecture, Connectors, Software Architecture, Clustering Algorithms, Object Oriented
System.

1. INTRODUCTION
Object-oriented development had not provided
extensive reuse and computing infrastructures are
evolving from mainframe to distributed environments,
where object technology has not led to massive
development of distributed systems. However,
component-based technology is considered to be more
suited for distributed system development due to its
granularity and reusability. Component Based
Development is gaining recognition as the key
technology for the construction of high quality, evolvable
large software systems in timely and affordable manner.

Using Component based software architecture is
beneficial because:

1. Exchange between software architects and
programmers easily.

2. Useful for reusing system parts represented as
components.

3. Clear separation between components and
connectors.

4. Localizing software defects and reducing risk of
misplacing new functionalities during mainte-
nance and evolution phases [14].

Software architecture has put forward connectors as
first-class entities to express complex relationships
between system components [6]. Although components
have always been considered fundamental building
blocks of software systems, the way the components of

the system interact may also be determinant on the system
properties. Recent development in the field of software
architecture have emphasized the concept of first class
connectors which capture the interaction between
components and the architectural connectors have
emerged as a powerful tool for supporting the description
of the interactions. There is a completely new approach
to building more reliable software systems which consist
to decompose large and complex systems into smaller
and well-defined units—software components.

Typically, components are considered to be entities
with well-defined provided (server) and required (client)
interfaces, and in some cases also with formally specified
behavior. A component based application is a collection
of individual components, which are interconnected via
well-defined connectors between their Interfaces.

Generally, software architectures are composed of
components, connectors and configurations, constraints
on the arrangement and behavior of components and
connectors. The architecture of a software system is a
model, or abstraction of that system. Software architecture
researchers need extensible, flexible architecture
descriptions languages (ADLs) and equally clear and
flexible mechanisms to manipulate these core elements
at the architecture level [1]. Today software systems are
composed from prefabricated heterogeneous components
that provide complex functionality and engage in complex
interaction. While retrieving component based software
architecture, if we identify connectors, these connectors
can be reused in similar systems and in more complex

mailto:shivanibudhkar@gmail.com
mailto:directormca_sibar@sinhgad.edu

International Journal of Computer Science and Communication (IJCSC)150

interactions. These connectors are needed to bridge
component mismatch or to achieve extra functional
properties e.g. security, performance, relia-bility. Also
connectors play major role in heterogeneous deployment.

A connector is a reusable entity that models the
implements binding among component interfaces. It is
inherently distributed; it consists of a number of connector
units, with each unit connected to particular component
interface [16]. Software connectors perform the transfer
of control and data among components. Connectors can
also provide services such as persistence, invocation,
messaging and transaction that are largely independent
of interacting components functionality. Capturing these
facilities as connectors helps simplify architecture and
keep the architectural focus on domain specific
information. Treating these services as connectors rather
than component can also help their reuse across domains.

Component contains only the business logic and
communicates with one another only via well defined
interfaces. The communication paths among the
components are in modern component systems realized
by software connectors, which allows explicit modeling
of communication and also its implementations at runtime.

According to Lubomir Bulej and Tomas Bures [7].
The deployment anomaly problem is inherent to
distributed systems and remains one of the strongest
motivation factors for introducing connectors as first
class entities in component based software architectures.
The lifecycle of a component differs significantly from
that of a connector.

When using connectors to mediate component
interactions, the developers can fully concentrate on
application logic, which is often written from scratch,
and forget about the implementation details of
component interactions, which only need to be written
only once and can be reused many times.

The use of connectors allows for greater flexibility
when choosing a transport method appropriate for
specific interaction.

Current level of work is still insufficient. Although
there is some work on the relationships and charac-
teristics of connectors, further step is necessary to
construct connectors from existing object oriented system
while retrieving component based architecture from
object oriented system.

The remainder of this paper is structured as follows.
Section 2: Literature Review, Section 3: Introduction to
Software Architecture Recovery, Section 4: Methodology,
Sections 5 and 6 conclusion and references.

2. LITERATURE REVIEW
Various works are proposed in order to extract software
architecture from object oriented system. Most of the
work uses source code and non- architectural information

to extract software architecture. Some of the work has
been done using quasi-manual, semi automatic and quasi
automatic techniques [14] Most of the components can
be extracted but not the connectors.

Here we are trying to extract connectors or connector
classes from object oriented system which will be part of
extracted component based architecture.

Various works on connectors has been done like
classification of connectors [7], interaction mechanisms
are constructed compositionally [4], Superposing
connectors [6]. Automatic Architectural refinement using
Family Design where product design is instantiated using
family design [2]. Exogenous connectors are defined
which helped in loose coupling in terms of data, function
and control [6]. While deploying components connector
roles and tasks are defined using connector model which
consists of consists of connector frame, connector
architecture, connector lifecycle [4]. For software
Architecture recoveries from existing system different
hierarchical algorithms are compared [14]. By using some
set of rules and Object-z specification Object Oriented
Design can be converted into Component Based
Design [14].

Software architectures described using our C3
metamodel which is a minimal and complete ADL [1]. A
more precise characterization of connectors than in previous
work, contradicting the idea that connectors are disjoint from
components and discussed, Relationships with coordinators
and adaptors [16]. Lubomir Bulej and Tomas Bures proposed
an abstract connector generator, a framework allowing to
create complex component interconnections almost
automatically [7]. Software compositions can be achieved
with the help of connector acting as a glue between the
communicating components [8].

Work on identification of connectors in software
architecture has not been done much.

3. INTRODUCTION TO SOFTWARE ARCHITECTURE
 RECOVERY

3.1 Definition of Software Architecture and
Architecture Recovery

IEEE defines software architecture as “the fundamental
organization of a system embodied in its components,
their relationships to each other, and to the environment,
and the principles guiding its design and evolution”; this
is closely related to the definition of Shaw, Perry and
Garlan [5].

Garlan and Shaw [5] define software architecture as
comprising components (elements which provide
computation services or passive data stores), connectors
(elements which provide interactions between the
components such as protocols) and configuration (the
topology of the system).

Component Interactions from Software Architecture Recovery 151

Architecture recovery is a part of reverse engineering
concerned with identifying architectural components
such as subsystems, modules, objects as well as their
interrelationships called connectors.

Architecture recovery consists of detection of
components and detection of connectors.

Concerning the detection of connectors, most
research has been directed towards concurrent and
distributed systems as these obviously rely heavily on
communication between components.

3.2 Elements of Software Architecture
The architecture of a software system is modelled using
following design level entities.

• Components: Components represent the primary
computational elements and data stores of a system.
Typical examples of component include such things
as clients, servers, filters, objects, blackboards and
databases. Components may have multiple inter-
faces, each interface defining a point of interaction
between a component and its environment.

• Connectors: Connectors represent interaction
among components. They provide the glue for
architectural designs. From the run time pers-
pective, connectors mediate the communication
and coordination activities among components.
Examples include simple forms of interaction, such
as pipes, procedure call, and event broadcast.
Connectors may also represent complex interac-
tions, such as client-server protocol, or a SQL Link
between a database and an application. Connectors
have interfaces that define the roles played by the
participants in the interaction.

• Configuration: A configuration represents graphs
of components and connectors. It specifies how
components are connected with connectors. This
concept is needed to determine if the components
are well connected, whether their interfaces match
and so on.

4. METHODOLOGY
There continues to be great deal of pressure to design
and develop information system within a short period
of time. So there is need to recover software architectural
elements from legacy object oriented system and keep it
into repository so that it could be reused as and when
needed for fast software development.

Software connectors are important parts of software
Architecture which are responsible for interaction
between components have an impact on software
Architecture recovery [17].

Presently the three important studies on software
architecture area are architecture style, architecture
connectors and dynamic architecture; it explicitly
indicates the importance of connectors [18]. Therefore
research on connectors has a very important significance
for software Architecture recovery. The objective of this
research therefore is to develop an approach for
connector retrieval from extracted component based
Architecture. Second objective is a variety of connector
must be made available for reuse which will be
maintained in repository.

This research has significance for several reasons.
First it proposes an approach to utilizing connector
repository and retrieving the appropriate connectors to
enable reuse and help system developers to use
corresponding interaction code. Also different views of
software connectors are useful for different tasks. In order
to model system and communicate its properties detail
view is needed.

Second it gives systematic construction of connectors
as it allows composing simpler interaction into more
complex one in an easier way. Also complex interactions
can be expressed by nested connector types.

Reuse of connectors is an attractive idea. Current
approaches do not capture component interaction
effectively. However component interaction has to be
reflected throughout whole application lifecycle,
otherwise they become serious obstacles in component
reusability.

Concretely our goal has been to create a compre-
hensive approach which would allow us to identify
connectors in recovered software architecture and could
be stored in connector repository.

Our main work is connector identification from
extracted component based software architecture. For
this we are going to use existing object oriented system
code. Then by using clustering algorithms and archi-
tectural semantic constraints component based software
is extracted. This contains two parts—component
identification and connector identification. First part, i.e.
component identification is already done by Sylvain and
Mourad [15].

The other method and techniques that will be used
in research are ROMANTIC approach proposed by
Sylvain and Mourad [2008] using Architectural semantic
constraints [15], Study of different clustering algorithms
and choose appropriate algorithms, Use of own software
reverse engineering tool for retrieving Software Archi-
tectural elements, some Software Architecture evaluation
algorithm or function can be used.

International Journal of Computer Science and Communication (IJCSC)152

5. CONCLUSION
Connector extraction process uses existing implemen-
tation code. While extracting we have to define model,
and use clustering algorithms which will map object
oriented code elements to architectural elements like
connectors. We need to evaluate this architecture is
semantically correct.

Once architecture is evaluated as correct one,
extracted components are used to define connectors.

We will experiment this process on any particular
object oriented system and whatever identified
connectors can be put into connector library of that
particular domain, which could be reused in another
similar system.

REFERENCES
[1] Abdelkrim Amirat, Mourad Oussalah, [2008]. “Enhan-

ced Connectors to Support Hierarchical Dependencies
in Software Architecture”, NOTERE 2008, June 23 –27,
2008, Lyon, France.

[2] Alexander Egyed Nikunj Mehta Nenad Medivdovic,
[2000]. “Software Connectors and Refinement in Family
Architectures”, Proceedings of 3rd International Workshop
on Development and Evolution of Software Architectures for
Product Families (IWSAPF), Las Palmas de Gran Canaria,
Spain, March 2000.

[3] Bridget Spitznagel David Garlan. “A Compositional
Approach for Constructing Connectors”. Proceedings of
the working IEEE/IFIP Conference on Software Architecture
(WICSA'01).

[4] Dusan Balek, Frantisek Plasil. “Software Connectors and
their Role in Component Deployment”.

[5] Garlan D. and Shaw M., “An Introduction to Software
Architecture”, in Advances in Software Engineering and
Knowledge Engineering (Tortora, V. A. and G., eds.),
pp. 1 – 39, Singapore, World Scientific Publishing
Company, 1993.

[6] Kung-Kiu Lau_, Perla Velasco Elizondo, and Zheng
Wang, [2005]. “Exogenous Connectors for Software
Components”.

[7] Lubomir Bulej and Tomas Bures, “A Connector Model
Suitable for Automatic Generation of Connectors”.

[8] Manzoor Ahmad, Jean Michel Bruel, Antoine Beugnard.
“From Composition to Connectors”.

[9] Michel Wermelinger, Antonia Lopes, Jose Luize Fiadeiro.
“Superposing Connectors”, (IWSSD'00).

[10] Nikunj Mehta, Nenad Medvidovic, Sandeep Phadke.
“Towards a Taxonomy of Software Connectors”.
Proceedings of 22nd International conference on Software
engineering, (ICSE'00).

[11] Onaiza Maqbool and Haroon Bari. “Hierarchical
Clustering for Software Architecture Recovery”. IEEE
Transaction on Software Engineering, 33 (11), November
2007.

[12] Stephane Ducasse Damien Pollet Lö¹c Poyet, “A Process-
Oriented Software Architecture Reconstruction
Taxonomy”, Accepted to CSMR, 2007.

[13] Stephen Kell, [2007]. “Rethinking Software Connectors
SYANCO”, 2007, September 3-4, 2007, Dubrovnik,
Croatia.

[14] Suk Kyung Shin and Soo Dong Kim, “A Method to
Transform Object Oriented Design into Component-
Based Design using Object-Z”. The Third ACIS
International Conference on Software Engineering Research,
Management and Applications, (SERA'05).

[15] Sylvain and Mourad. “Extraction of Component Based
Architecture from Object Oriented System”. Seventh
Working IEEE/IFIP Conference on Software Architecture
2008.

[16] Tomas Bures and Michal Malohlava and Petr Hnetynka.
“Using DSL (Domain Specific Language) for Automatic
Generation of Software Connectors”. Seventh
International Conference on Composition—Based Software
Systems, 2008.

[17] Trevor Parsons, Adrian Mos, Mircea Trofin, Thomas
Gschwind. “Extracting Interactions in Component Based
Systems”. IEEE Transaction on Software Engineering,
June 2008.

[18] Zhang Jingjun, Li Hui and Li Furong. “Research on
Aspect Connectors for Software Architecture
Adaptation”.

