
IJCSC Volume 4 • Number 2 September 2013 pp.161-166 ISSN-0973-7391

161

Determining Effectiveness of Multithreading for Solving
Problems with Low Computational Complexity

1 Ms.Rupsa Saha, 2 Ms. Shwetha Rai, 3Dr.Srikanth Prabhu, 4Dr. Geetha M.

Department of Computer Science, MIT, Manipal University Manipal, Karnataka, India.
1rupsa.saha@gmail.com,2shwetha.rai@manipal.edu,3srikanth.prabhu@manipal.edu,4geetha.maiya@manipal.edu

Abstract - Multithreading is an important aspect of modern
computing and also an established model for carrying out
complex computational problems for achieving better
performance. For simple computations, however, the
effectiveness of multithreading over sequential
programming is not apparent. This paper attempts to
determine the effectiveness of multithreading by
performing simple computation through single and multiple
threads for a range of very small number of computations to
a very large number of computations.
Keywords– multithreading, parallel computing,
performance, simple computation, POSIX.

I.INTRODUCTION
 In multiprocessor architectures, threads are used to
implement parallelism. Achieving parallelism is
important for getting computational gains [1]. A
number of procedures are scheduled to run
simultaneously by the operating system to make
better use of resources and CPU cycles. Threads
created by a single process exist within the process
resources. However, they can run as independent
entities because they duplicate only the resources
necessary for them to be executable code.
 Multithreaded models are an improvement on
multiprocessor models. This is because threads allow
for cheaper context switch as well as memory
considerations as compared to processes.
 Threads change the timing of operations, hence are
used for performance related problems. For complex
computational problems, threads allow much better
performance from a computer than sequential
programming models. In general, threads are useful
whenever the software needs to manage a set of tasks
with varying interaction latencies, exploit multiple
physical resources, or execute largely independent
tasks in response to multiple external events [3].
 In distributed computing, threads are often not a
practical abstraction because creating the illusion of
shared memory is often too costly. In cases where
simple computations are only required the overhead
of creating, despatching and exiting threads can
nullify the computational gains that threads attempt to
provide in the first place. Even though threads
provide very cheap context switching, still in such
cases the context switch is overweight with respect to
the actual computation done by the machine, leading
to degraded performance.

II.RELATED WORK
 High performance applications on shared memory
machines have typically been written in a coarse
grained style, with one heavyweight thread per
processor. The programmer can use multiple

lightweight threads and express a new thread to
execute each individual parallel task; the
implementation dynamically creates and schedules
these threads onto the processors, and effectively
balances the load. However, unless the threads
scheduler is designed carefully, the parallel program
may suffer poor space and time performance. G.J.
Narlikar [2] studies the performance of a native,
lightweight POSIX threads (Pthreads) library on a
shared memory machine running Solaris using a set
of parallel programs that dynamically create a large
number of threads. The programs include dense and
sparse matrix multiplies two N-body codes, a data
classifier, a volume rendering benchmark, and a high
performance FFT package. The results indicate that,
provided we use a good scheduler, the rich
functionality and standard API of Pthreads can be
combined with the advantages of dynamic,
lightweight threads to result in high performance.

 Linux itself has "tasks", and originally tasks mapped
one-to-one to processes. There was no multithreading.
Then it was decided to add threads to Linux. This was
done by dissociating tasks from processes. The idea
was to provide a general-purpose kernel mechanism,
whereby the kernel knew only of "tasks", which could
optionally share various common resources, such as
address spaces, file descriptor tables, and so forth,
with one another. This was intended to provide a
flexible mechanism on top of which various
process/thread models, presented by the application-
mode system library, could potentially be built,
including the POSIX threading model [4].
There are several reasons why the parallelization of
sequential programs is important. The most
frequently mentioned reason is that there are many
sequential programs that would be convenient to
execute on parallel computers [5].

III.OBJECTIVE
 The objective of this work is to find relevancy on
multithreading in extremely simple computational
jobs. By varying the number of computational jobs
performed and varying the number of threads used, an
attempt is made to show the usefulness of
multithreading in such cases.
 Performing an extremely large number of the same
basic operations can be considered a problem for the
algorithms having medium level of complexity,
whereas small number of simple operations is a
problem for algorithms having very low complexity.
In particular, this attempt is to see how the
performances of threads vary according to the various

IJCSC Volume 4 • Number 2 September 2013 pp.161-166 ISSN-0973-7391

162

levels of complexities while the task itself remains
simple and complexity arises only from the number
of computations to be performed.

IV. METHODOLOGY USED
 The threading model used here is the POSIX
threading interface, often called Pthreads.
 The program threading.c (P1) adds a certain number
or pseudo-random integers. The program uses
multithreading and takes two arguments. The first
argument signifies the number of integers to be
added. The second argument specifies the number of
threads to be created in order to process the job.
Let num be the number of integers. Let thr be the
number of threads.
Each thread handles the summation of n/k numbers.
The final sum is obtained by the sum of the results
produced by the threads. Pseudo-random integers less
than 100 are generated by the in-built function rand(),
seeded using the current system time.

Pseudocode of Program P1:
//Program to calculate sum of n random integers
parallel
//Input: Number of integers: num, Number of threads:
thr
//Output: Final sum: sum
main()
{

//calculate the number of integers to be
handled //by each thread

 max=num/thr;

seed the pseudo-random generator with
current system time

 srand(time(0));

 create the threads
 for i: 0 to thr
 pthread_create(...thread[i]…runner,
max);
 done

 wait for the thread to exit
 for i: 0 to thr
 pthread_join(thread[i], NULL);
 done

 print final sum;
}

runner()
{
 for i: 0 to max
 sum+=rand()%100;
 done
 exit the thread
}

The program sequential.c (P0) does the same work as

P1, i.e. add a certain number or pseudo-random
integers less than 100. This program takes one
argument and uses sequential programing. The
number of integers to be added is passed on to the
program as the argument.

Pseudocode of Program P0:
//Program to calculate sum of n random integers
sequentially
//Input: Number of integers: num
//Output: Final sum: sum
main()
{

seed the pseudo-random generator with
current system time

 srand(time(0));
 for i: 0 to num
 sum+=rand()%100;
 done

 print final sum;

}

V. EXPERIMENTAL ANALYSIS
 In order to find how threading affects performance
in case of computations with low level of complexity,
P1and P0 are run on a machine with 2 GB RAM,
Intel i3 core processor, using Linux Ubuntu
distribution, with varying number of threads in P1 for
a given number of integers.
 The time required to execute the program is obtained
by the time system call on the terminal. The utility
‘time’ takes a program name as an input and displays
information about the resources used by the program.
This information displayed consists of (i) the elapsed
real time between invocation and termination, (ii) the
user CPU time, and (iii) the system CPU time.
The program P0 and P1 are executed for different
datasets by varying the number of integers.
Case 1:
For P0, num=5, thr=0, the execution time is shown in
the Table 1.

Table 1: Execution time of P0
Dataset Real time

in sec
User time

in sec
System

time in sec
1 0.002 0 0
2 0.002 0.004 0
3 0.002 0 0
4 0.001 0 0
5 0.002 0 0
6 0.002 0 0
7 0.001 0 0
8 0.002 0 0
9 0.002 0 0
10 0.002 0 0

Average 0.0018 0.0004 0

IJCSC Volume 4 • Number 2 September 2013 pp.161-166 ISSN-0973-7391

163

For P1, num=5, thr=1 and thr=5, the execution time is
shown in the Table 2 and Table 3 respectively.

Table 2: Execution time of P1 using one thread

Dataset Real time
in sec

User time
in sec

System
time in sec

1 0.002 0 0
2 0.002 0 0
3 0.002 0 0
4 0.003 0 0
5 0.002 0.004 0
6 0.002 0 0
7 0.003 0 0
8 0.003 0.004 0
9 0.001 0.004 0
10 0.002 0 0

Average 0.0022 0.0012 0

Table 3: Execution time of P1 using five thread

Dataset Real time
in sec

User time
in sec

System
time in sec

1 0.003 0 0
2 0.004 0 0
3 0.003 0 0
4 0.002 0.004 0
5 0.003 0 0
6 0.003 0 0
7 0.004 0 0
8 0.002 0 0
9 0.007 0.004 0
10 0.003 0 0

Average 0.0034 0.0008 0

The average execution time for the execution of P0
and P1 is given in the Table 4 and Figure1
respectively.

Table 4: Average results for 5 integers
No. of

Threads
Real time

in sec
User time

in sec
System time

in sec
0 0.0018 0.0004 0

1 0.0022 0.0012 0

5 0.0034 0.0008 0

Fig 1.Number of threads vs. Time: 5 integers

Real time of execution
 It is observed that when num is small, sequential
execution is better than using multithreading. In this
case P0, which does not use threads, takes less time
than P1. Even if a single thread is despatched
separately through calling of P1, it leads to
marginally higher times. Increasing the number of
threads increases the time taken to complete the task.
Case 2:
For P0, num=1000000, thr=0, the execution time is
shown in the Table 5.

Table 5: Execution time of P0
Dataset Real time

in sec
User time

in sec
System

time in sec
1 0.032 0.028 0
2 0.034 0.032 0
3 0.029 0.028 0
4 0.04 0.036 0
5 0.041 0.032 0
6 0.035 0.027 0.004
7 0.04 0.032 0
8 0.045 0.036 0
9 0.04 0.036 0

10 0.038 0.036 0

Average 0.0374 0.0323 0.0004

For P1, num=1000000, thr=1, thr=10 and thr=100,
the execution time is shown in the Table 6, Table 7
and Table 8 respectively.

Table 6: Execution time of P1 using one thread
Dataset Real time

in sec
User time

in sec
System time

in sec
1 0.043 0.04 0

2 0.046 0.044 0

3 0.047 0.048 0

4 0.037 0.036 0

5 0.046 0.036 0.008

6 0.038 0.04 0

7 0.044 0.036 0.004

8 0.041 0.04 0

IJCSC Volume 4 • Number 2 September 2013 pp.161-166 ISSN-0973-7391

164

9 0.046 0.044 0

10 0.044 0.048 0

Average 0.0432 0.0412 0.0012

Table 7: Execution time of P1 using 10 threads
Dataset Real time

in sec
User time

in sec
System

time in sec
1 0.14 0.14 0.304
2 0.162 0.172 0.38
3 0.168 0.184 0.376
4 0.16 0.192 0.324
5 0.178 0.184 0.384
6 0.172 0.18 0.424
7 0.17 0.188 0.368
8 0.16 0.204 0.332
9 0.147 172 0.392
10 0.127 0.152 0.236

Average 0.1584 17.3596 0.352

Table 8: Execution time of P1 using hundred threads

Dataset Real time
in sec

User time
in sec

System
time in sec

1 0.162 0.148 0.228
2 0.186 0.16 0.236
3 0.148 0.156 0.252

4 0.16 0.128 0.208

5 0.174 0.144 0.188

6 0.157 0.164 0.26

7 0.178 0.176 0.264

8 0.189 0.188 0.204

9 0.174 0.204 0.46

10 0.184 0.12 0.548

Average 0.1712 0.1588 0.2848

The average execution time for the execution of P0
and P1 is given in the Table 9 and Figure 2
respectively.

Table 9: Average results for 1000000 integers

No. of
Threads

Real time
in sec

User time
in sec

System
time in sec

0 0.0374 0.0323 0.0004

1 0.0432 0.0412 0.0012

10 0.1584 17.3596 0.352

100 0.1712 0.1588 0.2848

�

����

���

����

���

� � �� ���

�
��

�
��
��
�	

�
��

 	��	���������

Fig 2.Number of threads vs. Time: 1000000 integers

Real time of execution

 The second sample has a fairly large number
(1000000) of integers to be added. It is observed from
the experimental analysis that P1 with 1 thread gives
slightly worse performance than P0 with 0 threads.
However, performance falls drastically as the number
of threads in P1 is increased first to 10 and then to
100.
Case 3:
P0 does not successfully execute for 10000000000
integers.
For P1, num=10000000000, thr=10, thr=100 and
thr=379, the execution time is shown in the Table 10,
Table 11 and Table 12 respectively.

Table 10: Execution time of P1 using ten threads
Dataset Real time

in sec
User time

in sec
System

time in sec
1 221.374 214.997 239.383
2 204.497 108.815 103.3
3 160.814 153.106 61.804
4 185.387 173.415 66.126
5 163.938 156.682 72.021
6 172.028 164.19 82.873
7 348.44 380.08 345.687
8 185.609 175.347 104.191
9 193.841 211.069 163.682
10 263.485 255.264 306.011

Average 209.9413 199.2965 154.5078

Table 11: Execution time of P1 using hundred threads
Dataset Real time

in sec
User time

in sec
System

time in sec
1 180.028 159.973 69.7
2 180.028 218.698 69.7
3 146.073 118.403 10.513
4 126.139 116.975 11.745
5 182.459 171.459 94.786
6 208.1 114.795 61.324

IJCSC Volume 4 • Number 2 September 2013 pp.161-166 ISSN-0973-7391

165

7 172.073 120.072 20.785
8 180.909 168.306 104.767
9 183.568 184.665 154.834
10 136.158 103.963 31.726

Average 169.5535 147.7309 62.988

Table 12: Execution time of P1 using three hundred and seventy

nine threads
Dataset Real time

in sec
User time

in sec
System

time in sec
1 250.018 236.111 196.024
2 181.728 113.191 12.173
3 146.236 117.003 11.833
4 200.222 182.283 104.415
5 173.385 137.909 19.377
6 170.598 117.039 16.417
7 190.094 131.944 39.15
8 172.567 155.118 69.728
9 158.545 114.795 14.516

10 240.751 191.608 164.098

Average 188.4144 149.7001 64.7731
The average execution time for the execution of P1 is
given in the Table 13 and Figure 3 respectively.

TABLE 13: Average results for 10000000000 integers

No. of
Threads

Real time
in sec

User time
in sec

System
time in sec

10 209.9413 199.2965 154.5078

100 169.5535 147.7309 62.988

379 188.4144 149.7001 64.7731

Fig 3.Number of threads vs. Time: 10000000000 integers

Real time of execution

 The third sample adds a large number of
(10000000000) integer. It is observed from the
experimental analysis that the amount of computation
being large increases the complexity of the program
in this case. Here, according to the collected timings,
running P1 with 100 threads gives a better
performance than running P1 with just 10 threads. On

increasing the number of threads to 379 however, the
performance of P1 declines.

 In the first case, adding 5 integers, the amount of
computation required is extremely low. In such a
situation, the overhead involved in creating,
dispatching and terminating threads decreases the
performance and hence is not justified.

 The second case, involving the addition of 1000000
integers is of greater complexity than the first. Results
obtained however show a performance pattern similar
to that of the previous case. Increasing number of
threads contribute to decreasing the performance.
Similar to the first sample, the amount of computation
is still too low to justify the usage of threads.

 In the third case, there are 10000000000 integers to
be added, leading to increased complexity of the
problem. The performance pattern observed here is
different from that in the previous two cases. Since
using 100 threads gives a better performance than
using just 10 threads, here the usage of threads is
justified. Even considering the overhead required for
handling 100 threads, performance is still better than
results obtained for lesser number of threads.
However, as the number of threads is further
increased to 379, performance declines, signifying
that for larger number of threads the overhead again
fails to justify the amount of computation required.

VI. CONCLUSION AND FUTURE SCOPE
 This paper attempts to determine the effectiveness of
multithreading by performing simple computation
through single and multiple threads for a range of
very small number of computations to a very large
number of computations.
 The research and analysis of this project has some
limitations as follows. Firstly, the data represented
here is a snapshot of the total data collected.
Secondly, the maximum number of threads that the
test machine supported was 379. Larger number of
threads led to segmentation faults. The total data
collected can be more extensive, from various
machine configurations and under different
constraints in order to have a more accurate diagnosis
of the behaviour of threads.
 Developing analyses for multithreaded programs can
be a challenging activity. The primary complication is
characterizing the effect of the interactions between
threads. The obvious approach of analysing all
interleaving of statements from parallel threads fails
because of the resulting exponential analysis times
[3].
 This project can be further extended to include a
wider range of variations of the parameters (i.e.
number of threads, and number of integers to be
added) in order to come to more accurate conclusions.
This can help to set a standard on the minimum
complexity of a problem that calls for usage of the

IJCSC Volume 4 • Number 2 September 2013 pp.161-166 ISSN-0973-7391

166

multiple threads. In turn it can also prevent misuse of
multithreading, in situations where threading actually
decreases performance and go on to clearly define at
least the lower bound of the capabilities of the
multithreading model. Further research and analysis
in this field will contribute to multithreading being
used appropriately and to its full functional capability.

REFERENCES
[1] Edward A. Lee, “The Problem with Threads”,

University of California, Berkeley, Tech. Rep
UCB/EECS-2006-1, 2006.

[2] G.J. Narlikar, G.E. Blelloch, “Pthreads for
Dynamic and Irregular Parallelism”, IEEE/ACM
Conference on Supercomputing, SC98, 1998.

[3] Martin Rinard, “Analysis of Multithreaded
Programs”, Laboratory for Computer Science,
Massachusetts Institute of Technology,
Proceedings of the 8th Static Analysis
Symposium, July 2001.

[4] http://homepage.ntlworld.com/jonathan.deboynep
ollard/FGA/linux-thread-problems.html

[5] U. Banerjee, R. Eigenmann, A. Nicolau, and D.
Padua. Automatic program parallelization.
Proceedings of the IEEE, 81(2):211–243, 1993.

[6] Robert D. Blumofe, Charles E. Lieserson, “Space-
Efficient Scheduling of Multithreaded
Computations”, MIT Laboratory for Computer
Science. In the Proceedings of ACM symposium
on Theory of computing, 1993.

[7] Kai Hwang, Faye A. Briggs, “Computer
Architecture and Parallel Processing”, 1st ed.,
2012.

[8] Kenneth C. Louden, “Design and Implementation
of Programming Languages”, 3rd ed., 2012.

