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Abstract— Genetic algorithms are good to find optimum solutions for a broad class of problems. Crossover is the 
important and main role playing operator in GA toolbox. Reproduction is done through crossover, hence one can 
optimize crossover to perform at the best. In this paper, arithmetic crossover researched and comparison of gradually 
changing value of alpha in is compared with fixed value of alpha. The experiments have been conducted using five 
different benchmark functions and implementation is carried out using MATLAB. Results show the improvement 
over simple genetic algorithm. 
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I. INTRODUCTION 
Genetic algorithms are adaptive algorithms proposed by John Holland in 1975 [1] and were described as adaptive 
heuristic search algorithms [2] based on the evolutionary ideas of natural selection and natural genetics by David 
Goldberg. They are powerful optimization techniques that employ concepts of evolutionary biology to evolve 
optimal solutions to a given problem. Genetic algorithm works with a population of individuals represented by 
chromosomes. Each chromosome is evaluated by its fitness value as computed by the objective function of the 
problem. The population undergoes transformation using three primary genetic operators – selection, crossover and 
mutation which form new generation of population. This process continues to achieve the optimal solution. 
The remainder of this paper is organized as follows: Section II presents Overview of Crossovers. Section III 
describes proposed crossover. Section IV tests the performance of arithmetic crossover with fixed alpha and 
changing value of alpha crossover and discusses the experimental results. Lastly, Section V contains the conclusion. 
 
II. Overview of Crossovers 
Genetic algorithms are population based search techniques. It searches through the state space by exploiting only the 
coding and objective function in each generation.  
Single point crossover is the pioneer crossover technique used in the past [1,2]. In this, a single crossover point on 
both parent chromosomes is selected by choosing a random number between (1, length-1) where length is length of 
chromosome. Both the parent chromosomes are split at the crossover point chosen and all data beyond that point in 
either chromosome is swapped between the two parent chromosomes [3].  
N-point crossover operator was first implemented by De Jong in 1975. It is generalized form of single-point 
crossover differing in number of crossover points [2]. For two point crossover, the value of N is 2. The value of N 
may vary from 1 to N-1. The basic principle of crossover process is same as that of one point crossover i.e. to 
exchange genetic material of the two parents beyond the crossover points.  
Uniform Crossover operator does not divide the parent chromosome into segments for recombination. Rather, it 
treats each gene of the chromosome independently to choose for the offspring. In Uniform crossover, number of 
crossover points is not fixed initially. It recombines genes of parent chromosomes on the basis of crossover mask. It 
selects x number of crossover points in the chromosome where the value of x is a random value less than the length 
of the chromosome. Crossover mask is generated according to this random value. In this crossover, each gene in the 
offspring is created by copying the corresponding gene from one of the parents. The selection of the corresponding 
parent is undertaken via a randomly generated crossover mask [2,3]. 
Arithmetic Crossover is used in case of real-value encoding. Arithmetic crossover operator defines a linear 
combination of two chromosomes [4,5]. Two chromosomes are selected randomly for crossover and produce two 
offsprings which are linear combination of their parents as per the following computation[6,7]:  
 
Cigen+1 = a.Cigen + (1-a).Cjgen  
Cjgen+1 = a.Cjgen + (1-a).Cigen  
 
where Cgen an individual from the parent generation , Cgen+1 an individual from child generation, a (alpha) is the 
weight which governs dominant individual in reproduction and it is between 0 and 1. 
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III. Proposed Arithmetic Crossover 
The alpha value in arithmetic crossover is fixed at the starting phase of GA in traditional Genetic algorithm. This 
alpha value plays an important role in deciding dominant parents to form the new generation. This value might be 
the centre of algorithm, hence a new crossover is proposed with changing value of alpha as the search proceeds. In 
proposed algorithm alpha value is set to 0.25 initially, and then gradually increased generation wise with a value of 
0.2, until it reaches a hill of 0.5. Once it reached to 0.5, it again set back to 0.25. 
 
IV. COMPUTATIONAL EXPERIMENTS AND RESULTS 
A. Experimental Set-up: In this paper, 5 different functions are examined in order to compare performance of 
genetic algorithms and proposed memetic algorithm. Table 1 lists the five test functions – their names, type and their 
description. 
 

Function Name Type 
F1 Sphere Function Unimodal 
F2 Rosenbrock’s Function Unimodal 
F3 Rastrigin’s Function Multimodal 
F4 Schwefel’s Function Multimodal 
F5 Ackley’s Path Function Multimodal 

 
First two functions are by De Jong and unimodal (only one optima) functions, whereas, other three are multimodal 
(containing many local optimas, but only one global optima) functions. 

 
Sphere [F1] is simple quadratic parabola. It is smooth, unimodal, strongly convex, symmetric, [8,9]. 
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Rosenbrock [F2] is considered to be difficult, because it has a very narrow ridge. The tip of the ridge is very sharp, 
and it runs around a parabola. The global optimum is inside a long, narrow parabolic shaped flat valley, [8,9]. 
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The Rastrigin, [F3] functions is example of non-linear multimodal functions. It is highly multimodal and has a 
complexity of O(n log(n)), where n is the number of the function parameters. This function contains millions of 
local optima in the interval of consideration. It has several local minima [8,9]. 
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Schwefel's function (F4) is deceptive in that the global minimum is geometrically distant, over the parameter space, 
from the next best local minima. Therefore, the search algorithms are potentially prone to convergence in the wrong 
direction, [8,9]. 
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Ackley's Path (F5) is a widely used multimodal test function, [8,9]. 
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global minimum: 
 
  f(x)=0; x(i)=0, i=1:n 
 

 
 
The following parameters are used in this implementation:  

• Population size (N): 10, 20, 50 
• Number of generations (ngen) : 100 and 500 
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• Selection method: Roulette Wheel Selection (RWS)  
• Crossover Operator: Arithmetic Crossover (alpha = 0.25) 
• Mutation: uniform with mutation probability 0.01%  
• Algorithm ending criteria: Execution stops on reaching ngen generations  
• Fitness Function: Objective value of function  

 
A. Experimental Results 
Average and minimum values of each function is recorded and examined for further analysis. 

Table II Minimum values for F1 
N 10 20 50 

Gen = 100 GA with fixed 
alpha 

0.6572 0.043 5.258e-004 

GA with 
changed alpha 

0.3316 0.001168 7.2137e-006 

Gen = 500 GA with fixed 
alpha 

0.3516 0.0153 1.729e-138 

GA with 
changed alpha 

0.25 4.0797e-004 0 (4.941e-324 at 
350th Iteration) 

 

   
     

 
Table III Minimum values for F2 

N 10 20 50 
Gen = 100 GA with fixed 

alpha 
0.952 0.9618 0.468 

GA with 
changed alpha 

0.6544 0.5372 1.1942e-005 

Gen = 500 GA with fixed 
alpha 

0.485 0.0495 0.1969 

GA with 
changed alpha 

0.0277 0.0141 7.354e-005 
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Table IV Minimum values for F3 

N 10 20 50 
Gen = 100 GA with fixed 

alpha 
1.309 2.1611 3.3726e-004 

GA with 
changed alpha 

0.0905 0.1899 2.7171e-006 

Gen = 500 GA with fixed 
alpha 

0.00128 0.09865 4.7916e-009 

GA with 
changed alpha 

1.6120e-004 0.07995 1.0579e-011 

 

          
 

Table V Minimum values for F4 
N 10 20 50 

Gen = 100 GA with fixed 
alpha 

-4.4229e+002 -4.653e+002 -6.159e+002 

GA with 
changed alpha 

-7.0679e+002 -5.113e+002 -8.216e+002 

Gen = 500 GA with fixed 
alpha 

-6.695e+002 -7.153e+002 -7.058e+002 

GA with 
changed alpha 

-7.995e+002 -7.785e+002 -8.050e+002 
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Table VI Minimum values for F5 
N 10 20 50 

Gen = 100 GA with fixed 
alpha 

0.577 0.3565 4.4408e-015 

GA with 
changed alpha 

0.466 0.1534 8.8817e-016 

Gen = 500 GA with fixed 
alpha 

0.365 0.2988 4.298e-008 

GA with 
changed alpha 

0.256 0.0014 8.8817e-016 

 

    
 
 
VI. CONCLUSION 
In optimization problems, one solution is never available for all problems. Genetic algorithm is an art of creating 
solutions for a wide class of problems. It depends on encoding scheme that which operators we can use as selection, 
crossing over and mutation steps of GA. In this the most promising operator is crossover. Arithmetic crossover is 
used when real value encoding is used. Changing value of alpha in arithmetic crossover is better than the fixed value 
in all generations.  
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