
IJCSC Volume 5 • Number 1 March-Sep 2014 pp. 164-169 ISSN-0973-7391

164

Conceptual Study of Agile Software Development

Sharnil Pandya, Ankur Kumar Yadav, Nikunj Dalsaniya, Vivek Mandir

Department of Computer Science & Engineering,Nirma University, Ahmedabad, India

sharnil.pandya@nirmauni.ac.in, ankurayadav@gmail.com, nikunj.dalsaniya@yahoo.in, vivek.mandir19@gmail.com

ABSTRACT
This paper consists of comparative study of agile processes. Agile
processes have important applications in the areas of software project
management, software schedule management, etc. In particular the
aim of agile processes is to satisfy the customer, faster development
times with lower defects rate. Agile development is invented for
handling change. This paper compares the agile processes with other
software development life cycle models. Agile processes are not
always advantageous in every case, they have some disadvantages as
well. So the advantages and disadvantages of agile processes are also
discussed in this paper.
Keywords: Agile Software Development, Software Engineering
Methodologies, Software Measurement, Software Development Life-
cycle (SDLC), SCRUM, XP, COSE , Crystal.

1. INTRODUCTION
Software has been part of modern society for more than 50 year.
Likewise, so have software development processes. The software
process is the foundation for engineering software. Within the
context of his book, Pressman defines “a software process as a
framework for the tasks that are required to build high-quality
software.” [1].
In software development life cycle, there are two main
considerations, one is to emphasize on process and the other is the
quality of the software and process itself. Agile software processes is
an iterative and incremental based development, where requirements
are changeable according to customer needs. It helps in adaptive
planning, iterative development and time boxing. It is a theoretical
framework that promotes foreseen interactions throughout the
development cycle. There are several SDLC models like spiral,
waterfall, RAD, Incremental, RUP which has their own advantages.
Software Development Life Cycle (SDLC) is a framework that
describes the activities performed at each stage of a software
development cycle.
The software development activities such as planning, analysis,
design, coding, testing and maintenance which need to be performed
according to the demand of the customer. It depends on the various
applications to choose the specific model. Agile process is itself a
software development process [2]. Agile process is an iterative
approach in which customer satisfaction is at highest priority as the
customer has direct involvement in evaluating the software [3].
In modern competitive era changes are frequent to any software
product or module which is under development, due to the market
competitions priority of requirements changes frequently and only
specific development is done which is urgently required and then
later on changes and improvements comes into the picture for the rest
developed modules. So requirement engineering is done in parallel to
software development and requirement changes often happen to
survive in the competitive market. Refactoring is also an important
type of change requirement which sticks the development policies
with the developed code and which comes into the picture once the
development task in bulk is over. Refactoring process improves code.
It is increasing the function while reducing code bulk.

Agile process is design for change, without refactoring and
rebuilding. Its objective is to design programs that are receptive to
change. It lets changes be applied in a simple way to reduce or avoid
major refactoring, system builds and retesting.
This paper is organized as follows: Characteristics of Agile
processes and agile process philosophy are presented in section II.
Section III discusses the phases of agile process methodologies.
Section IV consists of Agile Processes. Section V discusses the
advantages of Agile Process. Section VI is based on Disadvantages
of Agile Processes. Section VII is based on COSE, and Section VIII
discusses the comparison of agile processes. Finally, conclusions are
discussed in the section IX.

2. Agile Process Philosophy
Agile Software development philosophy has it roots in the reality of
today’s markets. Main aim of agile development is attempt to deal
with some issues introduced by rapidly changing and unpredictable
markets. The Agile Manifesto [5] is not an Agile Software
Development Methodology itself but the "spiritual" background for
Agile Software Development, so it called "Meta-Methodology". Or
as [6] said with respect to the Agile Manifesto: "Agile is an Umbrella
- Methodologies are Implementations”. Reading the “Manifesto for
Agile Software Development” [4] the basic ideas of the philosophy
are introduced through four basic values:

Figure 1. Basic Contents of the Agile Manifesto

2.1 Characteristics of Agile Projects
Agile process requires less planning and it divides the tasks into
small increments. Software development life cycle includes the
following phases:
1. Requirements gathering, 2. Analysis, 3.Design, 4.Coding,
5. Testing, 6. Maintenance.

The involvement of software team management with customers
reduces the risks associated with the software. This agile process is
an iterative process in which changes can be made according to the
customer satisfaction. In agile process new features can be added
easily by using multiple iterations.

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

Principles

Artifacts

Agile
Manifes

to

Values

Roles

Process

IJCSC Volume 5 • Number 1 March-Sep 2014 pp. 164-169 ISSN-0973-7391

165

1. Iterative
The main objective of agile software processes is satisfaction of
customers, so it focuses on single requirement with multiple
iterations.
2. Modularity
Agile process decomposes the complete system into manageable
pieces called modules. Modularity plays a major role in software
development processes.
3. Time Boxing
As agile process is iterative in nature, it requires the time limits on
each module with respective cycle.
4. Parsimony
In agile processes parsimony is required to mitigate risks and achieve
the goals by minimal number of modules.
 5. Incremental
As the agile process is iterative in nature, it requires the system to be
developed in increments, each increment independent of others, and
at last all increments are integrated into complete system.
6. Adaptive
Due to the iterative nature of agile process new risks may occurs.
The adaptive characteristic of agile process allows adapting the
processes to attack the new risks and allows changes in the real time
requirements.
7. Convergent
All the risks associated with each increment are convergent in agile
process by using iterative and incremental approach.
8. Collaborative
As agile process is modular in nature, it needs a good communication
among software development team.
Different modules need to be integrated at the end of the software
development process.
9. People Oriented
In the agile processes customer satisfaction is the first priority over
the technology and process. A good software development team
increases the performance and productivity of the software.

3. PHASES OF AGILE PROCESS
Figure shows the life cycle of AGILE process.

FIGURE 2. PHASES OF AGILE PROCESS. (ITERATIVE AND INCREMENTAL)

(ALL PHASES ARE OVERLAPPED)

4. Agile Processes
This section consists of the agile processes studied in this paper.
There are many Agile Methods.

Fig 3. Various Methods

The processes selected in this study are the following:

• Scrum
• Extreme Programming (XP)
• Crystal Methodologies (CM)

4.1 Scrum

 Daily Scrum
 Meeting

Figure 4 Three Stages in Scrum [7].

The Scrum methodology gets its name from the huddle formed by
rugby players to clash with the players from opposition. It was
developed by Ken Schwaber and Jeff Sutherland. The primary
thought behind this methodology is that the world is totally
unpredictable and hence, it is impossible to accurately plan for the
future. Scrum is an agile, lightweight framework for managing and
controlling software development in rapidly changing and distributed
environments
[8]
“Scrum relies on self-commitment, self-organization, and emergence
rather than authoritarian measures.” [Schwaber, Ken 1996][9].In
scrum method the entire development cycle is divided into a series of
iteration where each iteration is called as a sprint. Maximum duration
of a sprint is 30 days [9]. The Scrum framework is divided into three
stages:
Pre-Sprint: The Pre-Sprint stage involves Sprint planning. This is a
process of creating a list of features to be incorporated in the system.
The owner determines which feature is to be taken up in the next
Sprint. A Sprint Goal is also established which provides a purpose to
the team to achieve.

Sprint: Sprint stage leads to the development of the software. The
feature picked up from the list is implemented in a 30-day cycle.
There is a daily Scrum meeting which improves the visibility of each

Pre -
Sprint

Post -
Sprint

Sprint

IJCSC Volume 5 • Number 1 March-Sep 2014 pp. 164-169 ISSN-0973-7391

166

person’s work. Changes to any feature during a Sprint are not
allowed, except under extraordinary circumstances.
Post-Sprint: This stage involves customer demonstration, progress
review and technical review. This stage ensures that the customer
and the team have an early preview to the system.
At the end of this stage, the entire Scrum process is repeated.
Scrum requires at least one daily integration and regression test of
the code. In addition, a sprint review session of four hours maximum
is organized regularly to discuss and report to the manager and the
customer what has been accomplished so far during the sprint. The
sprint review session is also a way to receive feedback on regular
basis from the various stakeholders involved in the project.

4.2 XP
XP is the most successful method of developing agile software
because of its focus on customer satisfaction. XP requires maximum
customer interaction to develop the software. It divides the entire
software development life cycle into several number of short
development cycles. Main advantage of this is that it welcomes and
does changes or requirements from the customers at any phase of the
SDLC.

Figure 5 XP

Extreme Programming has defined practices and guidelines that
implementers should follow. The process begins by gathering stories.
These are short use cases, small enough to fit on an index card. Here
each story is business-oriented, estimable and testable. From the
stories, the customer selects the most valuable set. This set com
prises iteration and is coded first. Coding is done in pairs, two
people coding on one machine, and iteration is typically one to two
weeks long. Once complete the set is tested and put into production.
“The goal of each iteration is to put into production some new stories
that are tested and ready to go.” [11].
Testing plays a major role in XP. Each iteration is subjected to unit
testing. Writing all unit tests prior to writing any code is mandatory.
A particular iteration must pass its unit testing prior to going into
production. Customers determine system wide tests. Considering
their needs and referencing the stories, customers think about what it
would take to satisfy them that the iteration is successful. These
needs are translated into system wide tests. Testing regularly and
often at the unit level and system level provide s feedback and
confidence that the project is moving ahead and the system is
functioning according to the customer’s requirements.

4.3 Crystal Methods
The Crystal methodologies are a set of processes that can be applied
to different projects depending on the size and the complexity of a
project. The more critical the project, the more rigorous and formal
processes are required. Crystal methods define four levels of
critically [13]:

• Life (L): A system failure is critical and may cause loss of
life.

• Essential money (E): A system failure may cause loss of
money.

• Discretionary money (D): A system failure may cause
loss of money but can be fixed by referring to the system’s
user manual.

• Comfort (C): A system failure may cause a loss of
customer comfort.

•

Fig 6.Iterations

Small and non-critical projects can be developed using less rigorous
Crystal methods. Larger and more critical projects, however, demand
more attention and therefore, a more rigorous Crystal process is used.
A system failure for the fourth level may cause a loss of com fort
whereas a system failure for the first level may cause a loss of life
[12].
In this each member of the Crystal family is marked with a colour
indicating the 'heaviness' of the methodology, (ex. the darker the
colour the heavier the methodology). Currently two crystal
methodologies have been defined: Crystal clear and crystal orange.
The functions or practices are explicitly defined. Staging, this is the
scheduled time frame for one increment ranging from one to four
months duration. Increments include several iterations during which
construction, demonstration, and reviews are included activities.
Iterations are monitored and team deliverables gage the progress and
stability of iteration. User viewings, (i.e. reviews by users), are
conducted one to three times per iteration depending on the criticality
of the project. Methodology-tuning is a basic technique used to fix
and improve the process applying knowledge gained in one iteration
to the next iteration. In addition to the methodology-tuning
workshops there are reflection workshops conducted at the start of an
increment and midway into it [14].
Crystal methods are based on the principle that how to achieve a
maximum extent by which a written communication or documents
communication can be reduced to a verbal communication for faster
development. All Crystal methods begin with a core set of roles,
work products, techniques, and notations. There is no limit on team
size in crystal methods. Iteration lengths are large generally 4 months
and more. It is built to support distributed team.

Requirement
Documents

Policies
Standards
Roles Construction

Demonstration
Review Parallelism

and Flux
Monitoring
Of Progress

 Several
Iteration

User
Usable
Releas

Planning of
Next release

Scheduling

Every 1-4 Months

IJCSC Volume 5 • Number 1 March-Sep 2014 pp. 164-169 ISSN-0973-7391

167

The multiple processes offered by the Crystal methodologies are
adaptive and agile. They are adaptive because they offer multiple
solutions for projects having different criteria. They are agile because
they deliver work products at the completion of each project
increment and are able to apply lessons learned to the next iteration.
Additionally, they demand customer involvement, and decisions are
ma de based on outcome s rather than trying to force conformance to
a plan developed early in a project’s phase.

5. ADVANTAGES OF AGILE PROCESS
1) Adaptive to the changing environment: In agile software
development method, software is developed over several iterations.
Each iteration is characterized by analysis, design, and
implementation and testing. After each iteration the mini project is
delivered to the customer for their use and feedback. Any changes
that upgrade the software are welcome from the customer at any
stage of development and that changes are implemented.
2) Ensures customer satisfaction: This methodology re quires active
customer involvement throughout the development [15]. The
deliverables developed after each iteration is given to the user for use
and improvement is done based on the customer feedback only. So at
the end what we get as the final product is of high quality and it
ensures the customer satisfaction as the entire software is developed
based on the requirements taken from customer.
3) Least documentation: The documentation in agile methodology is
short and to the point though it depends on the agile team. Generally
they don’t make documentation on internal design of the software.
The main things which should be on the documentation are product
features list, duration for each iteration and date. This brief
documentation saves time of development and delivers the project in
least possible time.
4) Reduces risks of development: As the incremented mini software
is delivered to the customers after every short development cycle and
feedbacks are taken from the customers, it warns developers about
the upcoming problems which may occur at the later stages of
development. It also helps to discover errors quickly and they are
fixed immediately.

6. DISADVANTAGES OF AGILE PROCESS
1) Customer interaction is the key factor of developing successful
software: Agile methodology is based on customer involvement
because the entire project is developed according to the requirements
given by the customers. So if the customer representative is not clear
about the product features, the development process will go out of
the track.
2) Lack of documentation: Though the least documentation saves
development time as an advantage of agile method, on the other hand
it is a big disadvantage for developer. Here the internal design is
getting changed again and again depending on user requirements
after every iteration, so it is not possible to maintain the detail
documentation of design and implementation because of project
deadline [16].
3) Time consuming and wastage of resources because of constant
change of requirements: If the customers are not satisfied by the
partial software developed by certain iteration and they change their
requirements then that incremented part is of no use. So it is the total
wastage of time, effort and resources required to develop that
increment.
4) More helpful for management than developer: The agile
methodology helps management to take decisions about the software
development, set goals for developers and fix the deadline for them.
But it is very difficult for the baseline developers to cope up with the
ever changing environment and every time changing the design, code
based on just in time requirements.

7. CHANGE-ORIENTED SOFTWARE
ENGINERING
A change model for Change-Oriented Software Engineering (COSE)
is proposed in this section. Based on an evolution scenario, a lack of
support in current Interactive Development Environments (IDEs) is
identified to apply COSE. A set of extensions to an existing model of
first-class changes and describe the desired behaviour of change-
oriented IDEs to support COSE is introduced.
Model development information as change operations is proposed
that is retrieve directly from the programming environment the
developer is using, while developer is effecting changes to the
system. This accurate and incremental information opens new ways
for both developers and researchers to explore and evolve complex
systems.
New change request can come at any point of development i.e. at the
start of any project or at the middle of development or during the bug
fixing for a project or once the project is released and due to market
standards and any other associated parameter change, changes in the
product. So the model should be enough flexible to support the new
change request at any moment of time [17].
Figure depicts the one iteration of proposed model. When a new
change requirement will come into the system first of all it is
categorized. It means it is filtered in terms of functional requirements,
the new change request could be feature change request, it could be
database change related request or it could be in terms of a bug or
defect in the system or it could be change due to any other reason i.e.
change in specifications etc. Once the newly change request is
classified it will enter into the second phase where it is fitted to a
suitable agile model and technique for this. Here model storming is
also done so that in next time same type of change request can be
handled faster. The priority of the change request is also decided in
terms of execution. In the last phase this change request is sent to the
SDLC cycle for the execution.

Fig 7. Life Cycle

 PROPOSED MODEL

Fig 8 Requirement Requests

IJCSC Volume 5 • Number 1 March-Sep 2014 pp. 164-169 ISSN-0973-7391

168

8. COMPARISON

Fig.9 Comparision between various techniques

9. CONCLUSION
In this paper we have discussed the software development life cycle
models, the characteristics of agile process, methodologies of agile
process, advantages and disadvantages. In the comparative study of
agile software development with other software development models
we conclude that agile project is much better than other software
development process in terms of productivity, performance, faster
time cycles, risk analysis. Agile processes are implemented in
important applications such as web based, testing tools, etc.
In this paper, we presented our analysis of three agile software
processes and compared them based on criteria relate to software
development projects. Here objective of Agile Process is to help
project managers and software engineers understand the key
characteristics of these processes and therefore select the most
suitable process with respect to the type of software projects they
develop. In this paper benefit of agile development is adopted to
simplify the change-oriented software engineering.

ACKNOWLEDGMENT
We thank our guide Prof. Sharnil Pandya and faculty Prof. Kruti
Lavingia for their kind support and the proper guidance for this
survey paper which enhance our knowledge about Agile Software
Development.
We would like to thank Prof. Sharnil Pandya for his most support
and encouragement. He kindly read my paper and offered

invaluable detailed advices on grammar, organization, and the
theme of the paper. Also we would like to thank Prof. Kruti
Lavinagia to read my thesis and to provide valuable advices. This
research paper is made possible through the help and support from
everyone, including: parents, teachers, family, and friends.

REFERENCES
[1] Software Engineering a Practitioner’s Approach; Pressm an,

Roger S. McGraw Hill; 2001; p. 20.
[2] A. Ahmed, S. Ahmad, Dr. N Ehsan, E. Mirza, S.Z.

Sarwar,“Agile Software Development: Impact on Productivity
and Qulaity”, in the Proceedings of IEEE ICMIT.(2010).

[3] B.Boehm and R.Turner, “Balancing Agility and Discipline: A
Guide for the Perplexed, Addison, Wesley, 2003. M.
Wegmuller, J. P. von der Weid, P. Oberson, and N. Gisin,
“High resolution fiber distributed measurements with coherent
OFDR,” in Proc. ECOC’00, 2000, paper 11.3.4, p. 109.

[4] The Manifesto for Agile Software Development;
http://agilema nifesto.org/ ; last referenced Nov 1, 2002.

[5] R.Dumke, A.Schmietendorf, H. Zuse, Formal Descriptions of
Software Measurement and Evaluation – A Short Overview
and Evaluation, University of Magdeburg 2005,http://www

ivs.cs.unimagdeburg.de/sw-
eng/agruppe/forschung/paper/FormalM.pdf

[6] S. Ambler, Quality in an Agile World, September 2005 issue
of Software Quality Professional (http://www.asq.org)

[7] Scrum Log, Jeff Sutherland’s Website at
http://jeffsutherland.com

http://jeffsutherland.com/scrum/index.html.
[8] J.O. Coplien. (2011, August 2012). It’s Ordered - Not

Prioritized. Scrum Alliance [Online]. Available:
http://www.scrumalliance.org/articles/367-its-ordered--not-

prioritized, accessed 22 Au-gust 2012.
[9] http://en.wikipedia.org/wiki/Scrum_(development)

[10] Mass hysteria and the delusion of crowds; Kenny, Michael;
itopia Technoparkstr 1 8005 Zurich Switzerland; 2001; p. 7.

[11] Embracing Change with Extreme Programming; Beck, Kent;
IEEE Computer; October 1999; p. 72.

[12] Agile Software Development Methods; Abrahamsson, Pekka,
Salo, Outi; VTT Publications ISBN 951-38-6009-4; Sept 2002;
p. 39.

[13] A. Cockburn. Crystal Clear: A Human-Powered Methodology
for Small Teams. Addison-Wesley Professional, 2004.

[14] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile
software development methods: Review and Analysis” . Espoo,
Finland: Technical Research Centre of Finland, VTT
Publications 478.

[15] B.Boehm, “Anchoring the Software Process,” IEEE Software,
July 1996.

[16] B. Boehm and D.Port,”Balancing Discipline and Flexibility w
ith the Spiral Model and MBASE”. Crosstalk, Dec. 2001.

[17] Romain Robbes and Michele Lanza, “Change-based Approach
to Software Evolution”, Electronic Notes in Theoretical
Computer Science (ENTCS) archive, Vol. 166 , Pages 93-109,
2007.

[18] Barry Boehm, “Software Engineering Economics”, Prentice
Hall PTR, 1981.

[19] Tobin J Lehman, Akhilesh Sharma , “Software Development
as a service: Agile Experiences”, in annual SRII Global
Conference (2011).
Agile Software Development Ecosystems,Alistair Cockburn
and Jim Highsmith,Addison-Wesley, 2004.

 Customer
Collaborati
on

Time to
Market

Respondi
ng to
Change

Documentat
ion

Verificati
on and
Validatio
n

Team
Mangt

XP User
Stories

Onsite
Customers

2-3
Months

One Site
Customer

Short
Release

User Stories

Test Cases

Acceptance
Test

TDD

Unit
Testing
Integratio
n Testing
Acceptin
g Testing

1team/proje
ct
(3-16
member)

Scrum Create and
prioritize
the product
backlog

Review
meetings

Onsite
Customer

30 days Daily
Scrum
Meeting

Sprint
Review
Meeting

Short
Release

Product
Backlog
List

Sprint
Backlog
List

Sprint
Review
Unit
Testing

Integratio
n Testing

Regressio
n Testing

1-4 teams
(5-9 team
member)

Crystal
Clear

Direct
User
Involveme
nt

1-4
Months

Direct
User
Involvem
ent

Multiple
Tuning
Techniqu
e

Short
Release

Object
Models

User
Manuals

Test Cases

Unit
Testing

Regressio
n Testing

1-10 teams
(3-9 team
member)

Crystal
Orange

Direct
User
Involveme
nt

3-6
months

Direct
User
Involvem
ent

Multiple
Tuning
Techniqu
e

Short
Release

Object
Models

User
Manuals

Test Cases

Feature
Description

Regressio
n Testing

Formal
Testing

1-20 team
(10-40
team
member)

