
 VVoolluummee 88 •• IIssssuuee 11 SSeepptt 22001166 -- MMaarrcchh 22001177 pppp.. 6677--7755 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallss..ccoomm

Page | 67

MMaacchhiinnee LLeeaarrnniinngg--BBaasseedd SSooffttwwaarree BBuugg PPrreeddiiccttiioonn:: AA RReevviieeww
EErr.. SSeeeemmaa RRaannii

AAssssiissttaanntt PPrrooffeessssoorr,, CCoommppuutteerr SScciieennccee aanndd EEnnggiinneeeerriinngg,, CCDDLLSSIIEETT,, SSiirrssaa

Abstract – Software is used to operate a wide range of necessary systems and devices in today's

world. Consequently, many companies create systems with different sizes and functions in an

attempt to provide higher-quality software more quickly. The aim of this diversity in software

development is to effectively meet the client's goals while adjusting to the many demands of the

current technological environment. Early software bug prediction improves software's quality,

dependability, efficiency, and cost. Because software development and maintenance operations

are concerned with the overall success of software, software bug prediction (SBP) is a crucial

subject. Any software product or program that serves a commercial industry like production,

aeronautics, medical, financial coverage etc. is referred to as software system. Software quality

is determined by how well the program adheres to its design and how well it is constructed.

When assessing software quality, some of the factors we consider are accuracy, quality,

expendability, completeness, and lack of errors. Since different organizations use different

quality standards, it is preferable to use program metrics which are a better way to assess

program quality. Software metrics-collected attributes from source code can be used as an input

for software defect predictors. Errors introduced by stakeholders and software developers are

known as software defects. Through a careful analysis of the collection of existing research, the

goal is to investigate current trends in software bug prediction. The review concludes by

highlighting broad range of machine learning applications on software bug that we discovered

during earlier study projects.

Keywords: Software Defect, Software Engineering, Bug Prediction, ML Techniques.

1. INTRODUCTION

The presence of flaws in software has a significant impact on its dependability, quality, and

upkeep expenses. Even with correctly applied software, it takes labor to achieve bug-free

software because hidden defects are common. A significant issue in software engineering is also

creating software bug prediction models that could identify problematic modules early on. A

bug is any malfunction, mistake, or breakdown in software. It exhibits undesirable behavior and

either yields an incorrect or surprising outcome. It is an unexpected behavior caused by a flaw

in a software product [1]. A software flaw inevitably results from a system's software failing on

a regular basis over time. Errors introduced by stakeholders and software developers are known

as software defects. Improving software product quality while reducing their cost and time is

the primary goal of software defect prediction. A software defect, often known as a bug, is a

flaw in the software product that prevents it from carrying out the function that the developer

and user intended. One of the most important and inspiring areas of study is machine learning,

which aims to extract valuable information from massive data sets. Finding patterns in data that

may be used is the fundamental goal of machine learning. For example, structured data mining

can produce structured data & unstructured data. Here, we closely examined primary causes of

 VVoolluummee 88 •• IIssssuuee 11 SSeepptt 22001166 -- MMaarrcchh 22001177 pppp.. 6677--7755 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallss..ccoomm

Page | 68

failures that result in defects, cost of the software, time needed for testing and maintenance after

delivery to stakeholders. Furthermore, we look at machine learning principles, suggested fixes

for software errors and software engineering applications of machine learning particularly for

software testing and maintenance. Section 1 presents the research paper. Section 2 delineates

major factors contributing to software failures and presents the researcher's recommended filter.

Commonly known defect predictors were compiled in Section 3. Machine learning ideas and

their applications were covered in Section 4. Section 5 Finally, we attempted to evaluate the

machine learning research works concerning software bugs and categorized them according to

the techniques they employed, specifically the classification method, clustering method, and

ensemble approaches. In a summary, the researchers offer recommendations for future study

directions. Section 6 concludes the research.

2. KEY SOFTWARE FAILURE FACTOR

A software system is any software product or program that supports a commercial domain, such

as social networking, e-commerce, finance, healthcare, insurance, manufacturing, or any other

domain. Software system development and design requires funding, domain-specific experts, a

significant amount of time, tools, and infrastructure. Even though software companies have

extensive expertise in designing and implementing projects, but frequency of software failures

is on the rise, which results in lost time, money, and energy. The system can malfunction as a

result of a bug that occurs during each SDLC, or the client might not deliver precise

specifications since unfamiliar with information technology initiatives.

In addition, the survey respondents were questioned about the elements that lead to project

challenges. We have found that the two main things that make a project effective are inadequate

customer requirements and a lack of user input. The following diagram shows the main causes

of software failure:

 Insufficient User Input[2]

 Uncertain Aim[3]

 The Incomplete demands and conditions[4]

 Varying Necessities & Conditions

 Insufficient administrative support[5]

 Technology Incompetence

 Unrealistic Expectations[6]

 Impractical Time Frames

 Latest Technology

3. SOFTWARE DEFECT PREDICTOR

One approach or technique that supports software development life cycles and software testing

is the software defect predictor [7]. A software defect, often known as a bug, is a flaw in the

software product that prevents it from carrying out the function that the developer and user

intended. IEEE standard lists several categories for software errors [8], including:

 Defect:

It happens when an application doesn't work as required. Deviation between the

application/ software's actual and intended results is called default. Tasks and

 VVoolluummee 88 •• IIssssuuee 11 SSeepptt 22001166 -- MMaarrcchh 22001177 pppp.. 6677--7755 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallss..ccoomm

Page | 69

requirements provided by developer and customers are not being performed. In other

words, we can say that the bug declared by the programmer and inside the code is called

a Defect.

 Bug:
In software testing a bug is casual word of defect, signifies that s/w is not performing as

per the prerequisites. Coding error makes a program to malfunction and referred as a

bug. Term "bug" is used by the test engineers. A QA (Quality Analyst) can use the bug

report template to help them recreate and document any bugs they find.

 Error:
The customer may be experiencing this because they are aware of the software's

shortcomings, which lead to inaccurate outcomes. Code problems can result in errors,

meaning that a developer's coding fault may have happened because the developer

misinterpreted the need or failed to specify it correctly. Developers refer to this as an

error.

 Failure:
Software may have a bug if fault tolerance coding has not been added, which could

cause an application to malfunction. A program may experience a bug for the reasons

like insufficient resources, improper action and unsuitable definition of the data.

 Fault:
Numerous flaws cause software to malfunction, meaning that a loss indicates a serious

problem with the program, application, or one of its modules, rendering the system

unusable or malfunctioning. Put differently, we can argue that a specific problem with a

product is deemed a failure if it is discovered by an end-user. It is possible that a single

flaw could result in one or more failures.

4. BUG PREDICTION USING MACHINE LEARNING

One of the primary distinctions between human and computer labor is that human workers

typically expand efforts to enhance their performance while engaging in any given task. This

indicates that, unlike machines, humans are capable of performing any work with adaptability.

With the help of prior instances of correlations between input data and outputs, machine

learning algorithms "learn" to anticipate outputs. By testing, evaluating, and making corrections

when necessary, the models built based on the link between inputs and output gradually

improved [9]. In accordance with Tom Mitchell's description, machine learns accoding to

specific tasks T, performance P, and Experience E [10]. One use of artificial intelligence (AI) is

in machine learning. Thanks to advances in machine learning, computer systems can now be

trained on historical data to acquire new skills and grow more adept at doing specific tasks. The

term "cognitive system" refers to a system that uses a model to simplify the environment and

help grasp concepts and their surroundings [11]. We call this process of building the model

"inductive learning." By creating new patterns and structures, the cognitive system can integrate

its experiences. Machine learning is the process by which a cognitive system constructs a model

or pattern. By creating new patterns and structures, the cognitive system can integrate its

experiences. While informative patterns are characterized by just describing a fraction of the

data and predictive models are defined as those that can be applied to predict, the output of a

function (target function). Semi-supervised, supervised, unsupervised, and reinforcement

 VVoolluummee 88 •• IIssssuuee 11 SSeepptt 22001166 -- MMaarrcchh 22001177 pppp.. 6677--7755 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallss..ccoomm

Page | 70

learning are the types of machine learning [12]. We looked at supervised and unsupervised

learning below in sections a, b.

(a)Supervised Learning

A machine learning task is to derive a function from labeled training data. The training data is

an assortment of training examples. Every example is made up of two parts: an input item and

intended output. The identified tasks for supervised learning are classification and regression.

While classification deals with the creation of prediction models for functions with discrete

ranges, regression deals with the construction of continuous range models. Many machine

learning researchers are interested in supervised learning. Among popular supervised ML

approaches include concept learning, instance-based learning, Bayesian learning, classification,

linear regression, neural networks, and SVM.

(b)Unsupervised Learning

This is often referred to as observational learning. Unsupervised learning requires the system to

find patterns only by using the shared attributes of the sample without knowing how many

patterns exist. Popular methods here are clustering, sequential pattern mining, and association

rule mining.

Machine learning is not a challenging scientific field [13]. Software engineers can employ

machines to reduce the time and expense of the system development phase since they can learn

automatically from training data and build smaller versions of current systems or data

summaries. Creating machine learning-based solutions for software engineering issues is one

way to get around the integration of machine learning and software engineering. Similar to

other applications, software engineering requires pre-processing of the data and pattern

complexity before implementing machine learning techniques. Developers are currently paying

close attention to component-based approach fault prevention methods, which break down

projects into individual components to improve quality and reliability while reducing

development time and cost [14]. However, these methods are only useful for identifying issues

with individual component quality. We used factors including software development effort,

software dependability, and programmer productivity to quantify software quality and forecast

the significance of models in software engineering. Research was done on early software quality

prediction to improve system performance using machine learning approaches (fuzzy logic and

case-based reasoning) [15]. Research indicates that the following software engineering issues

are amenable to machine learning resolution: project management, software testing,

requirements gathering, software reuse qualification, software measurement selection, defect

prediction models, and software testing. We also referred to it as a machine learning application

in software engineering [16]. Of all the software engineering topics we identified, the researcher

chose to focus on software defect prediction using machine learning approaches for this study.

Machine learning has been expanding quickly, leading to the development of numerous learning

algorithms for various uses. The degree to which those algorithms are successful in resolving

 VVoolluummee 88 •• IIssssuuee 11 SSeepptt 22001166 -- MMaarrcchh 22001177 pppp.. 6677--7755 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallss..ccoomm

Page | 71

real-world issues determines their eventual worth. Thus, replication of algorithms and their

application to novel tasks are essential for the field's advancement [17]. Currently, meanwhile, a

number of machine learning researchers publish for the creation of software defect prediction

models. We now divide the successful software defect model into three categories: ensemble,

clustering, and classification approaches.

5. RELATED WORK

According to Ezgi Erturk et al., The PROMISE Software Engineering Repository provided the

data set for the experiment, and McCabe software metrics were used [18]. SVM, ANN, and

ANFIS (a newly introduced adaptive model) are the algorithms they used in the experiment; the

corresponding performance measures were 0.7795, 0.8685, and 0.8573.

Malkit Singh et al., Early software testing methods for investigating software faults included

building a model using a neural network tool based on the Levenberg-Marquardt (LM)

algorithm using data from the PROMISE and then contrasting LM accuracy with that of a

neural network based on polynomial functions. Levenberg-Marquardt (LM) had a better

accuracy (88.1%), according to the testing. Therefore, the machine learning based on neural

networks has good accuracy.

In this study, Saiqa Aleem et al.,employed a variety of machine learning techniques on about 15

different data sets like AR1, CM1, KC1, etc. Evaluated each method's effectiveness and came to

the conclusion that SVM, MLP, and bagging given the best accuracy results [19].

Martin Shepperd et al. [20] conducted an analysis and used a novel benchmark system to

anticipate and evaluate software defects. Various learning systems are assessed in the evaluation

step based on the chosen scheme. Next comes the prediction stage, when all past data is utilized

to create a predictor using the best learning scheme, which is then used to predict defects in the

incoming data.

In order to enhance the model's performance, Xi Tan et al. [21] experiment with a function

cluster-based software defect prediction model. The researcher increases recall value by 99.2%

& precision by 91.6%.

Jaspreet Kaur and associates [22] used a k-mean based clustering technique to investigate how

error-prone object-oriented programming is. Their findings led them to draw a conclusion, as

they achieved 62.4% accuracy.

Shanthini et al. built models utilizing an ensemble technique, with the aim of addressing

software failure prediction through the use of an ensemble approach. Three categories were

used to categorize the data set: method, class, and package levels. For both method and class

level measures, they used NASA KC1 data, and for package level metrics, they used eclipse

data with ensemble methods. The research's finding shows that bagging executes superior for

data at the procedure and package levels. The technique level findings are 0.809 for bagging,

0.782 for boosting, 0.79 for staking and 0.63 for voting using AUC-curve measurement.

 VVoolluummee 88 •• IIssssuuee 11 SSeepptt 22001166 -- MMaarrcchh 22001177 pppp.. 6677--7755 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallss..ccoomm

Page | 72

Similarly, for package level data, the AUC-curve performance measures are 0.82 for bagging,

0.78 for boosting, 0.72 for staking, and 0.76 for voting [23].

YI PENG et al., Purpose was to use an analytical hierarchal procedure to evaluate quality of

collective techniques in SFP. They used 10 publicly available NASA data sets and 13

performance indicators. In this paper, Bagging, Boosting, and Staking were an ensemble

method. Decision trees are base classifiers in this instance since their performance metric, Ada

Boost, yields the best result accuracy of 92.53%.To enhance clarity, we have compiled the

aforementioned works into Table IV, which includes the goal, the methodology used, the

studies' contribution, and an overall commentary on the studies.

Table I: Summary of Related Works

Author

(Year)

Objectives Methodology/Approach/

Tools/Techniques

Key Findings Remarks

Ezgi Erturk et

al (2014)

To find s/w bugs. -SVM, ANN, ANFS.

-Cross validation test

 Model.

-WEKA tool.

-Performance of

the model is

measured.

-SVM 0.7795,

-ANN 0.8685

-ANFS 0.857.

 NASA data set is

used and

maximum

accuracy they

scored is 0.857.

Malkit Singh

et al (2013)

Early in SDLC,

software problems

are predicted.

-Levenberg-Marquardt (LM)

 Algorithm

- ANN.

-Polynomial Function

-MATLAB

-Accuracy with LM

 based is 88.1 %

-Accuracy with PF

 is 78.8 %.

ANT-1.7data set

is used and

accuracy achieved

is 88.7%.

Saiqa Aleem

et al.(2015)

Comparative ML

techniques

employing

software prediction

models for

publically data.

-10 Cross validation test

-SVM

-Ada Boost

-Bagging

-Random Forest

-Accuracy for

 SFP model

 using

-SVM 89.29 %

-Bagging 89.38%

-Random forest

 89.08 %

NASA data set is

used. Accuracy

they scored is

99.52 for

PC2data.

Martin

Shepperdet

al.(2014)

To predict the

factors influencing

the accuracy of

SFP.

Meta-analysis is done for the

previous studies on SFP which

are relevant and good quality

studies.

They come to the

conclusion that

studies on defect

prediction ought to

focus on blind

analysis and

enhance intergroup

and reporting

processes.

It was a survey on

the factors that

affect

performance of

SFP accuracy.

Xi Tan

etal.(2011)

To recover the

software fault

prediction model's

performance

through the usage

of recall and

accuracy.

-Eclipse 3.0 data

-90 to 10 % data split

in terms of recall

and precision,

cluster-based

defect prediction

outperforms over

class-based models.

-Recall (31.6% to

99.2%)

-Precision (73.8%

 Eclipse3.0 data is

used and scored

the accuracy 99.2

%.

 VVoolluummee 88 •• IIssssuuee 11 SSeepptt 22001166 -- MMaarrcchh 22001177 pppp.. 6677--7755 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallss..ccoomm

Page | 73

to91.6%

QinbaoSong

et al.(2011)

A general

methodology for

assessing software

failure prediction

models was

devised and

evaluated by them.

-NASA datasets

-2 data preprocessors

-2 attribute selections

-NB

The highest

accuracy achieved

with the Naïve

Bayesian technique

on the PC1 data set

was 89.7%.

For PC1 data, the

maximum

accuracy using

NB is 89.7.

Jaspreet Kaur

et al.(2011)

They utilized K-

mean to predict

how prone to

errors object-

oriented

programming is.

-KC1 data set

-WEKA tool

-K-mean algorithm

Scored accuracy is

62.4 %.

Through KC1data

set scored

maximum

accuracy is 62.4.

Mikyeong

Park et

al.(2014)

To anticipate s/w

errors.

-3 promise repository

-X-Means

X means have

higher accuracy

(90.48) for AR3.

Author scored

accuracy 90.48.

Shanthini. A

et al.(2013)

Software defect

prediction with a

collective method.

-NASA KC1 Data

-WEKA Tool

-Bagging

-Staking

-Voting

-Bagging perform

 superior when

 compared with

 other.

-Bagging (0.809)

-Staking (0.79)

-Voting (0.63)

Class level data is

used & max

accuracy is AUC-

0.809.

6. CONCLUSION AND FUTURE WORK

Software system development is emerging more and more these days compared to earlier years.

But before the product is given to end users, quality control must be done. To enhance the

software quality, quality metrics such as CMM, ISO standards, and software testing are used.

These days, testing plays an increasingly significant role in program reliability. Predicting

software flaws can help software testing run more smoothly and help with resource allocation.

We ought to devote more time and provides resources to the error-prone modules. Research's

primary goal was to evaluate earlier studies on software defects that apply machine learning

techniques, data sets, tools, methodology, contributions to science, and classification systems.

REFERENCES

[1] Seema Rani," A Comparative Study Of Automation Tools And Frameworks Automated

Software Testing” in International Journal of Computer Science and

Communication(IJCSC),Volume 7, Issue-2, Mar-Sept 2016.

[2] Venkata U and R. A, "Empirical Assessment of Machine Learning based Software Defect

Prediction Techniques”, Proceedings of the 10th IEEE International Workshop on Object-

Oriented Real-Time Dependable Systems, 2005.

[3] Robert N, Akmel ,"Why Software Fails ", International Journal of Emerging Research in

Management &Technology,Volume-6, Issue-6, 2005. ISSN: 2278-9359.

 VVoolluummee 88 •• IIssssuuee 11 SSeepptt 22001166 -- MMaarrcchh 22001177 pppp.. 6677--7755 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallss..ccoomm

Page | 74

[4] Malhotra, Ruchika, and Yogesh Singh, "On the applicability of machine learning techniques

for object oriented software fault prediction",Software Engineering: An International Journal

vol 1.1, Pp 24-37, 2011.

[5] L. J, "Major Causes of Software Project Failures ", CROSSTALK The Journal of Defense

Software Engineering, pp. 9-12, July 1998.

[6] D'Ambros, Marco, Michele Lanza, and Romain Robbes, "An extensive comparison of bug

prediction approaches." Mining Software Repositories (MSR), 7th IEEE Working Conference,

2010.

[7] Vikas S and J. R, "Cataloguing Most Severe Causes that lead Software Projects to Fail",

 International Journal on Recent and Innovation Trends in Computing and Communication,

 vol. 2, Pp 1143–1147, May 2014.

[8] Mikyeong P and E. H, "Software Fault Prediction Model using Clustering Algorithms

Determining the Numberof Clusters Automatically", International Journal of Software

Engineering and Its Applications, vol. 8, pp. 199-204, 2014.

[9] R. Malhotra, "Comparative analysis of statistical and machine learning methods for

predicting faulty modules," Applied Soft Computing 21, (2014): 286-297

[10] Malhotra, Ruchika. "A systematic review of machine learning techniques for software fault

prediction", Applied Soft Computing 27, Pp 504-518, 2015.

[11] George T, Ioannis K, Ioannis P, and Ioannis V, "Modern Applications of Machine Learning

", Proceedings of the1st Annual SEERC Doctoral Student Conference vol. 1,2006.

[12] Sarwesh S and S. K, "A Review of Ensemble Technique for Improving Majority Voting for

Classifier", International Journal of Advanced Research in Computer Science and Software

Engineering,vol. 1, Pp. 177-180, January 2013.

[13] T. M. Mitchell, “The Discipline of Machine Learning”, Carnegie Mellon University, 2006.

[14] Xia C, Michael R, Kam-Fai W, and M. W, "Compare: A Generic Quality Assessment

Environment for Component-Based Software Systems," Center of Innovation and Technology

the Chinese University of Hong Kong, pp. 1-25.

[15] Ekbal R, Srikanta P, and V. B, "A Survey in the Area of Machine Learning and Its

Application for Software Quality Prediction, "ACM SIGSOFT Software Engineering, vol. 37,

September 2012.

[16] M. M. Rosli, N. H. I. Teo, N. S. M. Yusop and N. S. Moham, "The Design of a Software

Fault Prone Application Using Evolutionary Algorithm," IEEE Conference on Open Systems,

2011.

[17] Yogesh S, Pradeep K, and O. S, "A Review of Studies on Machine Learning Techniques,"

 International Journal of Computer Science and Security, vol. 1, pp. 70-84.

[18] E. Erturk and E. A. Sezer, "A comparison of some soft computing methods for software

fault prediction," Expert Systems with Applications, 2014.

[19] Saiqa A, Luiz F, and F. A, "Benchmarking Machine Learning Techniques for Software

Defect Detection", International Journal of Software Engineering & Applications, vol. 6, pp. 11-

23, May 2015.

 VVoolluummee 88 •• IIssssuuee 11 SSeepptt 22001166 -- MMaarrcchh 22001177 pppp.. 6677--7755 aavvaaiillaabbllee oonnlliinnee aatt wwwwww..ccssjjoouurrnnaallss..ccoomm

Page | 75

[20] Martin S, David B, and T. H, "Researcher Bias: The Use of Machine Learning in Software

Defect Prediction", IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, vol. 40, pp.

603-616, JUNE 2014.

[21] X. Tan, X. Peng, S. Pan, and W. Zhao, "Assessing Software Quality by Program Clustering

and Defect Prediction," pp. 244-248, 2011.

[22] Jaspreet K and P. S, "A k-means Based Approach for Prediction of Level of Severity of

Faults in Software System," Proceedings of International conference on Intelligent

Computational Systems, 2011.

[23] Pooja P and D. A. Phalke, "Software Defect Prediction for Quality Improvement Using

Hybrid Approach", International Journal of Application or Innovation in Engineering &

Management, vol. 4, June 2015.

