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Abstract: This paper presents some details on scalar and vector potential in electromagnetism and discusses some characteristics
of integrability conditions, gravitational potential energy and pressure as buoyant potential. Brief introduction to
electromagnetism and some fundamental equations of scalar and vector potential are also presented with the help of images

and the graphs of scalar and vector potentials.
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1. INTRODUCTION

Electromagnetism is the branch of science concerned
with the forces that occur between electrically charged
particles. There exists some electromagnetic force in the
electromagnetism. This electromagnetic force is one of the
four fundamental interactions in nature, the other three being
the strong interaction, the weak interaction and gravitation.

The word is a compound from two Greek terms, €lektron,
“amber” (as electrostatic phenomena were first described as
properties of amber by the philosopher Thales), and

magnétes, “magnet” (the magnetic stones found in antiquity
in the vicinity of the Greek city of Magnesia, in Lydia, Asia
Minor).

Electromagnetism is the interaction responsible for
almost all the phenomena encountered in daily life, with the
exception of gravity. Ordinary matter takes its form as a result
of intermolecular forces between individual molecules in
matter. Electrons are bound by electromagnetic wave
mechanics into orbitals around atomic nuclei to form atoms,
which are the building blocks of molecules [1-2].

Electromagnetism manifests as both electric fields and
magnetic fields. As shown in Fig. 1 and Figure 2, both fields
are simply different aspects of electromagnetism, and hence
are intrinsically related - a changing electric field generates
a magnetic field; conversely a changing magnetic field
generates an electric field. This effect is called electromagnetic
induction, and is the basis of operation for electrical
generators, induction motors, and transformers The
theoretical implications of electromagnetism led to the
development of special relativity by Albert Einstein in 1905
[1,8-9].

Electric fields are the cause of several common
phenomena, such as electric potential (such as the voltage
of a battery) and electric current (such as the flow of electricity

through a flashlight). Magnetic fields are the cause of the
force associated with magnets. In quantum electrodynamics,
electromagnetic interactions between charged particles can
be calculated using the method of Feynman diagrams, in
which picture messenger particles called virtual photons
being exchanged between charged particles. This method
can be derived from the field picture through perturbation
theory.
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2. ELECTROMAGNETICPHENOMENA

With the exception of gravitation, electromagnetic
phenomena as described by quantum electrodynamics
(which includes classical electrodynamics as a limiting case)
account for almost all physical phenomena observable to
the unaided human senses, including light and other
electromagnetic radiation, all of chemistry, most of mechanics
(excepting gravitation), and, of course, magnetism and
electricity. Magnetic monopoles (and “Gilbert” dipoles) are
not strictly electromagnetic phenomena, since in standard
electromagnetism, magnetic fields are generated not by true
“magnetic charge” but by currents. There are, however,
condensed matter of magnetic monopoles in exotic materials
(spin ice) created in the laboratory [1,3-4].

3. SCALARPOTENTIAL

Scalar potential describes the situation where the difference
in the potential energies of an object in two different positions
depends only on the positions, not upon the path taken by
the object in travelling from one position to the other. Itis a
scalar field in three-space: a directionless value (scalar) that
depends only on its location. Fig. 3 describes about the scalar
gravitational potential well of an increasing mass in 3D space.
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Figure 3: Gravitational Potential well of an
Increasing M ass where

A scalar potential is a fundamental concept in vector
analysis and physics (the adjective scalar is frequently
omitted if there is no danger of confusion with vector
potential). The scalar potential is an example of a scalar field.
Given a vector field (F), the scalar potential P is defined
such that,
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Where, V P is the gradient of P and the second part of
the equation is minus the gradient for a function of the
cartesian coordinates X,y,z In some cases, we can use a
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positive sign in front of the gradient to define the potential.
Because of this definition of P in terms of the gradient, the
direction of F at any point is the direction of the steepest
decrease of P at that point, its magnitude is the rate of that
decrease per unit length.

In order for F to be described in terms of a scalar potential
only, the following have to be true:

~[F di-P(b)-P(a)

where the integration is over a Jordan arc passing from
location ato location b and P(b) is P evaluated at location b.
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where the integral is over any simple closed path, otherwise
known as a Jordan curve.

VxF=0

The first of these conditions represents the fundamental
theorem of the gradient and is true for any vector field that is
a gradient of a differentiable single valued scalar field P. The
second condition is a requirement of F so that it can be
expressed as the gradient of a scalar function. The third
condition re-expresses the second condition in terms of the
curl of F using the fundamental theorem of the curl. A vector
field F that satisfies these conditions is said to be irrotational
(Conservative) [5].

4. VECTORPOTENTIAL

In vector calculus, a vector potential is a vector field whose
curl is a given vector field. This is analogous to a scalar
potential, which is a scalar field whose gradient is a given
vector field [5-6].

Formally, given a vector field v, a vector potential is a
vector field A such that

v= VxA

If a vector field v admits a vector potential A, then from
the equality

V(V*xA)=0

5. MAGNETICVECTORPOTENTIAL

Fig. 4 shows the graph of scalar and vector potential with
magnetic field. The magnetic vector potential A is a vector
field defined along with the electric potential [] (a scalar field)
by the equations:

B=VxA E= —V(I)—a—A,
ot

where B is the magnetic field and E is the electric field.
Defining the electric and magnetic fields from potentials
automatically satisfies two of Maxwell's equations: Gauss’s
law for magnetism and Faraday’s Law.
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VA=V (VxA)=0
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Alternatively, the existence of A and ¢ is guaranteed
from these two laws using the Helmholtz’s theorem. For
example, since the magnetic field is divergence-free (Gauss’s

law for magnetism), i.e. V- B=0, Aalways exists that satisfies
the above definition. The vector potential A is used when
studying the Lagrangian in classical mechanics and in
quantum mechanics (see Schrodinger equation for charged
particles, Dirac equation, Aharonov-Bohm effect) [7-10].

Figure 4: Graph Scalar and Vector Potential with
M agnetic Field

6. INTEGRABILITY CONDITIONS

Consider F is a conservative vector field (also called
irrotational, curl-free, or potential), and its components have
continuous partial derivatives, the potential of F with respect
to a reference point ro is defined in terms of the line integral:

V= [ F(rydr = —j:F(r(t))- Pt

where Cis a parametrized path fromr_tor
ri),a<t<b,r@=ry,r(b)=r.
The fact that the line integral depends on the path C

only through its terminal points ', and I, in essence, the path
independence property of a conservative vector field [5].

7. ALTITUDEASGRAVITATIONAL POTENTIAL
ENERGY

Fig. 5 shows the uniform gravitational field near the Earth's
surface and Fig. 6 depicts the plot of a two-dimensional slice
of the gravitational potential in and around a uniform spherical
body. The inflection points of the cross-section are at the
surface of the body.
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Figure 6: Uniform Gravitational Field Near the
Earth’s Surface

Figure 7: Plot of a 2D Slice of the Gravitational Potential
in and Around a Uniform Spherical Body
The (nearly) uniform gravitational field near the Earth’s
surface has a potential energy which is given by,

U= mgh
where U is the gravitational potential energy and h is the
height above the surface. This means that gravitational
potential energy on a contour map is proportional to altitude.
On a contour map, the two-dimensional negative gradient of
the altitude is a two-dimensional vector field, whose vectors
are always perpendicular to the contours and also
perpendicular to the direction of gravity. But on the hilly
region represented by the contour map, the three-dimensional
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negative gradient of U always points straight downwards in
the direction of gravity F. However, a ball rolling down a hill
cannot move directly downwards due to the normal force of
the hill's surface, which cancels out the component of gravity
perpendicular to the hill's surface. The component of gravity
that remains to move the ball is parallel to the surface

Fg=-mgsin 0
where 0 is the angle of inclination, and the component of Fg
perpendicular to gravity is

FP= —N‘gsinecos():—%r‘r‘gsinze

Let Ah be the uniform interval of altitude between
contours on the contour map, and let AX be the distance
between two contours. Then

i A_h
AX

0= tan

AX Ah

so that -ng——-.
L AX® + Ah?
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However, on a contour map, the gradient is inversely
proportional to A,, which is not similar to force F: altitude
on a contour map is not exactly a two-dimensional potential
field. The magnitudes of forces are different, but the directions
of the forces are the same on a contour map as well as on the
hilly region ofthe Earth’s surface represented by the contour
map [5].
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