International Journal of Electronics Engineering, 1(1), 2009, pp. 19-26

Features Preserved Medical Image Denoising Using
Steered Complex Shrinkage Algorithm

M. Venu Gopala Rao' & S. Vathsal?

'Narasaraopeta Engineering College, Narasaraopet, Guntur Dt., A. P, INDIA

’Director, Dept. of Energy, VIT University, Vellore, T. N., INDIA

Abstract: In this paper we propose a new wavelet domain, structure driven denoising technique called Steered Complex
Shrinkage which preserves the edges, corners and orientation features and application to medical images. For this purpose
we used an efficient steerable complex pyramidal wavelet transform that uses pairs of complex steerable orientation bandpass
filters. These complex filters have been engineered into a multirate system, providing a synthesis and analysis sub band
filtering system with good reconstruction properties. The performance of the proposed denoising algorithm is comparable
with that of recently reported state-of-the-art denoising techniques using undecimated discrete wavelet transform with soft-
shrinkage, and presents a very promising avenue for exploring structure based denoising in the wavelet domain.
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1. INTRODUCTION

Estimates of local orientation in images play a very important
role in many computer vision tasks such as feature detection,
image denoising, contour extraction, image segmentation and
even high-level tasks such as object recognition. Local
orientation may be estimated from the vector fields obtained
by applying differential operators, edge detectors [1], [19]
and steerable filters [18] to the luminance channel of a colour
image.

In medical images, noise suppression is particularly a
delicate and difficult task. A trade off between noise
reduction and the preservation of actual features (such as
edges, corners, and orientations) has to be made in a way
that enhances the diagnostatically relevant image content.
Image processing specialist usually lack of biomedical
expertise to judge the diagnostic relevance of the denoising
results. For example, in MRI images corrupted by Rician
noise may contain information useful to medical experts.
And also biomedical images show extreme variability and
it is necessary to operate on a case by case basis. This
motivates us the co-nstruction of denoising methods that
preserves the important features of medical images. In this
paper we propose a wavelet domain structural driven
denoising technique called Steered Complex Shrinkage using
steerable pyramid complex wavelet transform.

1.1 Motivation and Background

In the past two decades there has been a fair amount of
research on wavelet thresholding and threshold selection for
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signal denoising because wavelet provides an appropriate
basis for separating noisy signal from the image signal. These
classical discrete wavelet transforms (DWT) are non-
redundant, and are powerful tools for many non-stationary
signal processing applications, but they suffers from the
following major limitations; (i) oscillations (ii) shift
sensitivity (iii) poor directionality, (iv) rotation invariance
and (v) absence of phase information. To overcome these
limitations many researchers are developed various
techniques. For example Freeman [1] introduced steerable
filters and Simoncelli [2] further developed and introduced
shift-invariant transform employing undecimated band pass
filters. More recently Kingsbury [3] introduced a very
elegant computational structure, the dual tree complex
wavelet transform (DT-DWT) which employs near-shift
(rather than rotation) invariant properties. Recently, we
proposed a hybrid algorithm named as a Complex Fourier
Wavelet regularized Deconvolution (ComForWaRD)
algorithm [4] for medical imaging using DT-DWT and
proved that it outperforms in all aspects with that of recently
reported state-of-the-art denoising techniques using
undecimated discrete wavelet transform with soft shrinkage.
Other constructions can be found such as [5] and [6]. The
main limitations in both steerable pyramid and DT-DWT of
Kingsbury’s approach is that they employ over-complete
represent-tations and computationally intensive. And also
their performance in compression process is poor.
Orientation estimation is particularly important for the
extraction of contour or region boundaries for image
segmentation. Although in signal processing, the dominant
orientation is usually dependent on the size or scale of a given
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neighbourhood, human subjects perceive contour boundaries
and their orientations at the appropriate scale for segmentation.
This indicates that a scale selection or a scale weighting
process is involved in the human perception of orientation,
especially for boundaries. Perona [20] applied anisotropic
diffusion to orientation maps. Feng and Milanfar [21] used
principle Component Analysis (PCA) to obtain the dominant
orientation at each scale and weighted these with an eigenvalue
based measure of orientation dominance. This yields a single
orientation estimate for each location. Solving eigen systems
of gradient neighbor hoods for each location and scale adds a
computational overhead and the particular measure of
orientation dominance is limited by the evaluation of gradient
energy in only two orthogonal orientations, i.e. the method
assumes a maximum of two orthogonal structures at each
location. We adopt a different approach by increasing the
orientation-selectivity of our filters such that the interference
from structures at different orientations is minimized, thereby
avoiding the need to solve eigen systems at each scale.

We propose an effective and feature preserving
denoising technique using steerable pyramid complex
wavelet transform originally proposed by A.A. Bharath and
Jeffry Ng [7]. This transform has two important features:
(i) the filter kernels are specified by separable angular and
radial functions in the frequency domain which has not been
reported jointly in a multirate scheme so far, and
(i1) transform domain denoising system which exploits
steerability property explicitly.

1.2 Filtering Adopted to Expert Defined Features of
Interest

Clinicians usually tend to prefer the original noisy images
(for example ultrasound) rather than the smoothed versions
because the filters, no matter how sophisticated they are,
can destroy some relevant image details. However, it is also
true that noise suppression in many cases significantly
enhances the visibility of some image features and it
undoubtedly facilitates automatic image processing tasks
such as segmentation. It is thus important to develop such
noise filters, which can guarantee the preservation of those
features that are of interest to the clinician.

The paper is organized as follows. The structure of
Steerable Complex Pyramid Wavelet Transform is briefly
outlined in Section-2. The orientation maps, corner
likelihood response, phase and edge structure estimations
are described in Section-3. The denoising algorithm using
Steered Complex Shrinkage Technique is described in
Section-4. The computer simulations and results for CT and
MR images are discussed in Section-5, Finally the
conclusions and further research is provided at the end.

2. STEERABLE COMPLEX PYRAMID WAVELET
TRANSFORM

The design of the pyramid employs decimation in the
lowpass channel in order to achieve the scaling of filter
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responses through successive levels of decomposition. The
nature of the scheme is illustrated in Fig.1. For convenience
in tuning angular and radial characteristics of the filters, we
impose Fourier domain polar separability, so that an analysis
filter G, (o, ¢) in the kth direction in a filter set can be
specified as the product of a radial frequency function and
Q (o) angular frequency function @ ,(9), i.e., G, (», §) =
Q(0)P, (¢). The matching synthesis filter G, (o, ¢) can
be specified by the product of the same angular frequency
function @ (¢) and a synthesis radial frequency function
Q (w).

Isotopic Downsample Upsample Isotropic

Lowpass rows and rows and Lowpass
filer columns columns filter
O
x(m, n) x(m, n)
—

Oriented Bandpass
Complex Analysis
filters

—sutmn|

Oriented Bandpass
Complex Synthesis
filters

Figure 1: Isotropic Representation of Pyramidal Unit, Illustrating
a Single Stage of Decomposition and Reconstruction

2.1 Radial Frequency Response of the Lowpass Filters

The isotropic low-pass radial frequency response, in the
radial frequency domain on the interval -t < ® < 7 is given

by
1

Hy(o,0) = Hy(w) :m

(M

where @, =3n/8. This is equivalent to a cascade of two third-
order Butterworth filters, and was chosen to provide a
reasonably flat power response, when used in combination
with the bandpass radial frequency response, for radial
frequency components in the range [0, ®__ ]. The value o
resents the maximum frequency of the bandpass radial
frequency response.

2.2 Radial Frequency Response of the Bandpass
Filters

For most natural scenery, the magnitude of the frequency
components drops off rapidly with increasing radial spatial
frequency. With this choice of lowpass filter characteristic,
the aliasing is minimal, except in the high-frequency
components images. The radial frequency response of the
bandpass filters is based on Erlang functions (further details
see [8]) is given by

e

14 @)

;
Qy(w) = [ j o’ e ?U(w)



Features Preserved Medical Image Denoising Using Steered Complex Shrinkage Algorithm 21

where U(m) is the unit step function. Erlang functions are
one sided, are smooth, and have the property that Q ()= 0.

2.3 Angular Frequency Response

The angular characteristics of the steerable wavelets are
determined by several requirements. First, the requirement
to achieve near-perfect reconstruction (PR) in the angular
decomposition is desirable. The filters that we have designed
use, instead, a function that is zero over one half of Fourier
space. This yields complex filters consisting of symmetric
and anti-symmetric spatial impulse responses that allow the
extraction of local properties of symmetry in particular
directions. Control over angular selectivity is also very
relevant, and we have sought prototype angular functions
that allow bandpass channel orientation selectivity to be
readily tuned.

The prototype general angular frequency characteristic

@, (¢) = cos’ (¢) rect (¢/m) 4)
has been used, where rect(¢/m) = U(d + 1) U(¥2—0) and U(+)
is the unit step function.

The prototype angular frequency response is rotated to
generate the angular characteristics of oriented filters for a
full filter set by the following:

@, (0) =D, (0-9,) (&)
The number of unique filter kernels necessary to implement
this choice of a K = 8 filter set is only 4. Accordingly, the
angular characteristics of the filter in the Fourier domain
satisfy the following.

e
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D 04 () @14 (0)+ P 9+ TP, (0+T) =C,  (6)

k=0

To obtain near PR across the angular selective band pass
filter channels, it is useful to have C 5 3s close as possible to
a constant value. This is similar to the frame reconstruction
requirements of decompositions addressed in [9]. Correction
can be made for non-uniform C ¢(¢) in a post-filtering step.

2.4 Steering and Orientation Estimation

The steerable filtering framework allows both orientation
adaptive filtering and orientation estimation to be performed
in one framework. At the /th level of pyramidal
decomposition, we wish to combine the outputs of K fixed
bandpass filters at K orientations, in order to synthesize an
output from a bandpass filter that is oriented at some angle
¢. Letf” (m,n),k=0,1, ..., K, denote the output of the kth
bandpass filter at level /. First, note that, due to the nature
of 2-D Fourier space, the outputs of the filters corresponding
to k = K/2, K/2+1, ... K— 1 are provided by the complex
conjugates of the out puts of filters in the range k=0, 1, ...,
K/2-1. Specifically, we have

Sy =(f0mm) . k=0,1...K2-1  (7)
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If the angle that we wish to steer the filters to is denoted by
¢, then we compute the steered output /' (m, n ¢) of the
bandpass filters at levelof the decomposition by

K/2-1

SO g0)= D 5,04 £ (m.m)+
20 . (3
D s, @£ (mm)

k=0

The functions sp(d), k) and s, (¢, k) are the polynomial steering
functions and they control the weights given to the K fixed
filters by exploiting the relation of (7). The steering functions
are compactly represented by using the coefficients p, and
g, of the polynomial fits in steered angle ¢, to the steering
weights as determined by.

p q
5, (@0 =" P (" and 5,(6:6) =D g (9" (9)

n=1 n=1

3. GENERATING FEATURE MAPS

In this section we describe the orientation maps, Corner
Likelihood Response and phase estimation in brief and are
as follows.

3.1 Orientation Maps

One of the primary aims of the filter design is the
construction of the bandpass filters in required orientation
dominance for visual attention particularly for medical
imaging. A measure of orientation dominance has been
constructed using the idea of circular variance. This notion,
employed, for example in [10] for characterizing the angular
tuning of orientation-selective cells in the primary visual
cortex of mammals, provides a measure quite similar to the
principal eigenvector of the Hessian, used in scale-space
techniques [11]. Based on this measure, we construct an
orientation dominance complex field as follows:

K/2-1 i
D
- - (0)

p+(2§;_1m¢(” (m,n) [ )E

where the conditioning constant p is set at 1.25% of the
maximum value in the image being decomposed.

0" (m,n) =

3.2 Corner Likelihood Response

The outputs of the filters may be used to generate a measure
that may be associated with the likelihood of a particular
location in an image being the corner of some structure. We
construct the corner feature map

KI2-1) oy
T 1" onm)

K21 ) /2
|14 G,

c (m,n) =
pe(X

(11)



The map produced by (11) uses the product of the
magnitude of responses from individual filters sensitized to
different directions, yielding a strong response only if all
filters have a strong response. The design of the kernels is
important here, though the energy is measured in a particular
radial frequency band corresponding to the scale of the
decomposition, to prevent arbitrary point-noise sources from
yielding strong responses. Also, the denominator normalizes
the response to local anisotropic energy.

To illustrate the principle, Fig. 2(a) shows a well-known
scene containing toy blocks. The measure overlaid on
Fig. 2(b), is given by

Cietinood (m,m) = CP (m,n) 1V (m, m) (12)

where /() is an isotropic measure of local energy in the /th
subband of radial frequency. It is generated from filter
outputs by

G (o) = (Zmz_l‘fkm o, n)‘z jl/z )

k=0

Bilinear interpolation is used to align feature maps at
different scales.
3.3. Phase Estimation

Phase estimates extracted from the steerable filters provide
ameans of feature extraction. Examples on the use of phase
as an image feature can be found in [12], [1] and [13]. We

Test Imags

Loormeir Likelihaod

— &

Trirabmnlded Likelifhgod

Afiar Postprocessing

Figure 2: (a) Original image. (b) Measure C&Zehhood,

superimposed on original image. (¢) C{3inood
thresholded at 0.2, to yield a binary region mask. (d)
After post-processing applied to (c) which consists of
connected components labeling, finding the centroid
by binary moments, and sketching a circle around the
centroids.

apply the technique of steered phase estimation to construct
a likelihood image for edges of particular structures. In the
example of this section, we construct measures of edge
structure likelihood and of interior structure likelihood, both
extracted from different scales of decomposition of a simple
image of rice grains. The phase estimate y'” (m, n) is
obtained from the argument of the complex filter outputs /
(m, n, ),

v (m, n) =arg (f (m,n, ) (14)
Our proposed edge likelihood function at location (m, n),
which is quite specific to this problem, is formulated as

r® (m,1)(0.001+C® (m,m)C® (m, )

(15)
0.01+T2 (m,n) + T (m, n)
where
T (m,n) = 04 (m, n)cos(\vgg) (m,n) +“) ’ (1o

U (cos (\uy) (m,n)+ n))

1) Gm,m) = O (m,m)cos(w (m,m) U (cos (w (m,m) )
and, U(") is the unit step function.

3.4 Edge Structures Estimation

The measure of edge likelihood (15) is designed by noting
that edge pixels are + 7 likely to have a phase of radians at a
fine scale of band pass filtering, coupled with a strong
orientation dominance; this leads to I', the term in the
numerator of (15) defined as in (16). Because a pure phase
response will tend to “ring” around an edge, the overall
likelihood function is decreased by penalty terms that
effectively suppress this ringing. The penalty terms in I'\"
(m, n) utilize the observation that the interiors of objects
will display a phase close to zero at the coarser scales (here,
scales 2 and 3), together with strong orientation dominance
at these scales. Because the strength of the orientation
dominance decreases near to a corner, the corner similarity
measures of (11) derived from scales 1 and 2, (CY (m, n)
and C(®(m, n)), are used to boost the likelihood response as
shown in the numerator of (16).

The corner response used is illustrated in Fig.3(a), and
the final edge likelihood function is superimposed on the
original image in Fig. 3(b). No edge-linking or post
processing has been used to produce these images, apart from
gating on the red color channel.

4. IMAGE DENOISING ALGORITHM

For the past two decades image denoising has been
demonstrated in the wavelet domain using techniques
involving soft thresholding approaches, also known as
wavelet coring and wavelet shrinkage in the literature [14-
18]. In this paper we use Steered Complex Shrinkage
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Figure 3: (a)&(c) Corner likelihood response (18) in red, (b)&(d)
Edge likelihood function (15) in red superimposed on
the rice grain and Pelvic MR image.

technique that utilizes the feature maps suggested in previous
sections. The denoising, thus, takes the form of a structure-
driven technique, which smoothes along edges, and, at coarse
scales, preserves corner structures. The approach is as
follows and the various stages of the algorithm are illustrated
in Fig. 4.

(1) Decompose the noisy image into subbands as

follows.
(a) A down sampled low-pass channel at the coarsest

(b) L-level Obtain the orientation dominance field O
(m, n) for £ =0, 1, ... L using (10). From this
equation compute the dominant orientation map ¢”
(m, n).

for ¢ =L:-1:0

(2) Filter the bandpass channels f{* (m, n) with the
synthesis filter bank to reconstruct the unsteered

image channels f k(g) (m,n) .

(3) Steer the reconstructed image channels fk([) (m,n)
to obtain f,:,(g) (m,n) using (8) with the dominant
orientation map ¢"(m, n).

(4) Upsample Df)(m, n) and filter with the synthesis
lowpass filter to obtain f ) (m,n) .

Generate a reconstructed version of the image at
level /-1 by a weighted summation of the
reconstructed image at level ¢, f%(m, n) the
unsteered reconstructed image channels

)

k(é)(m,n) , and the steered reconstructed image

channel fAS([) (m,n).

(’Df(zfl) ) (m,n) = a}é)f([) (m,n)+ oc(zé)(m, n)

K/2-1
S 1Oty mm JO oy
k=0

where oc(zé) (m,n) = G;é)y(z) (c)(Oy) (m,n)+C"(m, n))

and ol (mm)=G{") (1 ~1"(0)(1+04C (m,n)))

6. Then obtain the denoised image ¥ (m, n) = f© (m,

scale DfY(m, n), where D represents a down n).
sampling operator. end
Isotropic Downsample Upsample Isotropic
Lowpass rows and rows and Lowpass
filter fO(m, n) columns coflﬂu_n;ns filter /} ( [)(m ")
hy(m, n) ’ h(m, n)
g (ma n) Ao
xX(m, n Eolm 1) o SOm, n)
- " —E
L= =] Image structure
- . =| ] . dependent weighted
|_I% ,1 =, structure
5 ) . . . & 5
EY (Al h
12— (41 el
Oriented Bandpass Oriented Bandpass ) (m,n)
Complex Analysis Complex Synthesis ’
filter filter

Figure 4: Illustration of the various stages of the denoising algorithm.
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Some conditioning of the wavelet outputs is required
prior to applying (10) in Step (2): A complex shrinkage is
used across all scales, and the anisotropic measure (11) at
the finest scale is weighted by the anisotropic measure at
one scale above. More details of the complex shrinkage are
to be found in, and, in particular (20). It should be stressed
that these operations are only used to condition the
anisotropy measure, and not for the noisy coefficients used
in the steered reconstruction.

In (17) a{" is a gain function for the low-pass channel,
which is usually very close to 1, a{” (m, n) is a field that
adjusts the steered output to preserve edges at intermediate
and coarse scales and a{” (m, n) is a field which preserves
strong corner points at coarse scales in high noise, and at all
scales in low-noise conditions. andare optimized once, and
not altered with noise or images. The noise-dependent
weights 7 (o) alter the balance between steered and
isotropic response depending on the estimated noise in the
image. The effect of this sequence of operations is to smooth
the image (by suppressing band pass output) in regions where
there is little dominant orientation, and in cases of high noise.
Where there is strong orientation dominance, however, the
bandpass output is maintained as a steered response.

4.1 Steered Complex Shrinkage

For the shrinkage of coefficients in our complex wavelet
decomposition, called ComplexShrink, we have applied the
following mapping to the outputs of the analysis bandpass
filter channels for all levels ¢,

(|fk([)(m,n)| _ T(Z))e(j-arg(ﬁ(“(m,n)))’ |fk(£)(m’ n)| >0
0, Otherwise
(18)

The threshold 7 was set to a value of 0.1

10 (m,n) =

O.Ika(é) (m, n)” ,1.e., 10% of the maximum band pass output

magnitude at each scale, and this was not changed during
the experiments. Our suggested steered reconstruction called
Steered Complex Shrinkage is based on the algorithm defined
in (17).

5. COMPUTER SIMULATIONS AND RESULTS

A standard test pattern Shepp-Logan head phantom, a
Thyroid CT Coronal image and a Pelvic MR images of sizes
512 x 512 each are used for the denoising purpose and
elevating the important features such as edges, corners and
orientations. An additive white Gaussian noise (AWGN) of
variance, 30 is added to the original image to obtain noisy
image. In the case of noisy image, noise variance is calculated
using the median absolute variance (MAV) estimator ¢, =
Median (JHH1|)/0.6745 of Donoho [15], where is the
diagonal sub band of noisy image at scale 1. The Steered
Complex Shrinkage Algorithm described in previous section
with steerable filters is used for the denoising purpose. All
the algorithms are implemented in Matlab. The results are
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compared with soft shrinkage technique in decimated
discrete wavelet transform (Symmlet-8) called Symmlet
Shrinkage in various forms are shown in Fig. 5 to Fig. 7.
Fig. 8 shows the 256" horizontal line profile comparison
for Shepp-Logan head phantom which clearly demonstrates
the denoising performance using Complex Shrinkage.
Table 1 shows the comparisons of widely used metrics such
as Signal to Noise Ratio (SNR), Peak Signal to Noise Ratio
(PSNR), and Improved Signal to Noise Ratio (ISNR). The
results show that the proposed algorithm improves in SNR

Cinginal bmans

Moizy Imaga

Symm Sheinkage  SteerCom Shrnkage

Figure 5: (a) Original Shepp-Logan Head Phantom (b) Noisy
Image Corrupted with AWGN of Variance 30. (c)
Denoising using Symmlet Shrinkage (d) Denoising
using Proposed Steerable Complex Shrinkage
Algorithm

Onginal Image

Mpisy Image

Symm Shrinkage

SieerCom Shrinkage

Figure 6: (a) Original Thyroid CT Coronal Image (b) Noisy Image
Corrupted with AWGN of variance 30. (¢) Denoising
using Symmlet Shrinkage (d) Denoising using Proposed
Steerable Complex Shrinkage Algorithm
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Ciriginal Irmiage

Mosy Image

Symm Shenkage  Sleeilom Shrnkage

Figure 7: (a) Original Pelvic MR Image (b) Noisy Image
Corrupted with AWGN of Variance 30. (c) Denoising
using Symmlet Shrinkage (d) Denoising using Proposed
Steerable Complex Shrinkage Algorithm

of 2.49dB over Symmlet Shrinkage for Pelvic MR Image.
More over the visual appearance of edges, corners and
orientations are improved in the proposed algorithm. The
computation time for Symmlet Shrinkage is 0.4 seconds and
additional 18.16 seconds for optimal shrinkage factor
calculation, where as 9 seconds for the steered complex
shrinkage in Intel Pentium 2.8 GHz with 512 MB RAM.
The corner and edge orientation maps are also shown in
Fig. 2. and Fig. 3.
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6. CONCLUSIONS AND FURTHER RESEARCH

We proposed a new transform (wavelet) domain structure
driven denoising technique called Steerable Complex
Shrinkage which preserves the edges, corners and orientation
features and application to medical images. For this purpose
we used an efficient steerable complex pyramidal wavelet
transform that uses pairs of complex steerable orientation
bandpass filters. These complex filters have been engineered
into a multirate system, providing a synthesis and analysis
sub band filtering system with good reconstruction
properties. The corner and edge orientation maps are shown
in Fig. 2 and Fig. 3. The results for medical image denoising
using the Steerable Complex Shrinkage algorithm is shown
in Fig. 5 to Fig. 8 and Table.1. Our proposed algorithm
improves not only in terms of signal to noise ratios and also
enhances the edge and corner orientation features.

Our current denoising approach makes use of orientation
and steered phase features from the bandpass channels only,
and we have performed denoising and reconstruction only
with these and the lowpass channel. While we can both
increase the angular selectivity of our system and introduce
highpass residual channels, we have chosen to keep the
complexity of the filter bank system low in order to explore
parallel hardware implementation. To obtain further
improvements, it is also necessary to develop principled
statistical models for the behavior of features under addition
of noise, and their relationship to the uncorrupted wavelet
coefficients. And also the proposed algorithm considered
additive white Gaussian noise only. It is required to develop
the algorithm for other noisy sources such as Poisson, Rician
and Speckle are corrupted specifically in medical imaging.

1
o) l':lnglrml Image Symm Shrinkage
E L 1 r—
=
g 1
& Maisy lmage Slemed Complex Shrinkaps
EN5
i i ! 1
0 i[1 1] 200 300 400 500 O 100 200 300 L] s00
2561h Horzontal line profile
Figure 8: 256" Horizontal Line Profile Comparison for Shepp-Logan Head Phantom
Table 1
Signal to Noise Ratio Comparisons for Three Images
Reconstruction Technique Shepp-Logan Head Phanton Pelvic MR image Thyroid CT Coronal image
MSE SNR  PSNR ISNR  MSE SNR  PSNR ISNR  MSE SNR  PSNR  ISNR
(dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)
Discrete Wavelet Transform 11852 1524 27.39 882 160.79 19.07 26.07 7.43 9732 19.56 2923  9.67
Steered Complex Shrinkage ~ 91.77  16.39 2853 996  90.74 21.55 2856 998 58.86 21.74 3142 11.86
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