
IJITKM Special Issue (ICFTEM-2014) May 2014 pp. 101-106 (ISSN 0973-4414)

101

Memory leaks in Web 2.0 Applications
 Bhanwar Gupta

1
, Dr. Puneet Goswami

2

1,2
GGITC Ambala

 1
bhanwargupta@gmail.com,

2
 goswamipuneet@gmail.com

Abstract: Web 2.0 is a buzzword for the new definition of the Web and the Internet.Web2.0 provides the

user with more user- interface, software and storage facilities, all through their browser. The client-side (Web

browser) technologies used in Web 2.0 development include Ajax and JavaScript frameworks. JavaScript is

a powerful scripting language used to add dynamic content to Web pages. While JavaScript is easy to learn

and write, it is prone to memory leaks in certain browsers. In this paper we will explain what causes memory

leaks in Web2.0 applications, demonstrate some of the common memory leak patterns to watch out for, and

show how to work around them.

Keywords: Web 2.0, AJAX, Optimization, Performance, Javascript, Memory Leak, Javascript.

1. INTRODUCTION
Since the Web 2.0 era, Web Applications have changed for the better. They provide more functionality,

better usability and improved performance. However this tendency led to increased complexity. It is not

unusual for a user to stay on a single page for hours without leaving. The browser would just poll data from the

server through Ajax requests and display it in even more interesting manners. Therefore it is no wonder that

web applications have become hungrier for resources and the browsers couldn’t keep up with it. The heavy

utilization of JavaScript and DOM revealed the poor memory management of most of the major browsers at the

time[3].

With Web2.0, the interaction model for web applications has become more robust, allowing for continuous

interaction and improved usability. Adding Ajax capabilities to applications offers users a more interactive,

responsive experience that can provide an organization with benefits such as fewer abandoned

transactions, longer user sessions, and higher completion rates.

While these new technologies enable greater performance and code re-use, the benefits come at a cost – added

complexity. With these new patterns, JavaScript memory management becomes an even more critical aspect of

the development process.

A memory leak is a gradual loss of available computer memory. It occurs when a program repeatedly fails to

return memory it has obtained for temporary use. JavaScript web apps can often suffer from similar

memory related issues that native applications do.

Generally, browser memory leaks are not an issue for web applications. Users navigate between pages, and

each page switch causes the browser to refresh. Even if there's a memory leak on one page, the leak is released

after a page switch. The size of the leak is minor, and consequently often ignored.

Memory leaks became more of a problem when the Ajax technology was introduced. On a Web 2.0 style

page, users don't refresh the page very often. Ajax technology is used to update the page content

asynchronously. In an extreme scenario, the whole web application is constructed on one page. In this

case, leaks accumulate and can't be ignored.

Although JavaScript uses garbage collection for automatic memory management, effective memory

management is still important.

2. Memory Management in Web2.0

Applications
Low-level languages, like C, have low-level memory

management primitives like malloc() and free() [6]. On the other hand, JavaScript values are allocated when

things (objects, strings, etc.) are created and "automatically" free'd when they are not used anymore. The latter

process is called garbage collection[2]. This "automatically" is a source of confusion and gives JavaScript (and

high-level languages) developers the impression they can decide not to care about memory management which

is a mistake.

2.1 Memory Consumption

Memory consumption stands for the amount of memory a particular program utilizes throughout its

execution. This term is self-explanatory as every application relies on the underlying memory to store

instances of variables [2]. The more the variables, the larger the memory consumption will be. Therefore

it is a common assumption that more complicated applications require more memory.

http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/User_interface

IJITKM Special Issue (ICFTEM-2014) May 2014 pp. 101-106 (ISSN 0973-4414)

102

2.2 Object Graph
All values in JavaScript are part of the object graph. The

graph begins with roots, for example, the window object. Managing the lifetime of GC roots is not in our

control, as they are created by the browser and destroyed when the page is unloaded. Global variables are

actually properties on window.

2.3 Object Sizes

The memory graph starts with a root, which may be the window object of the browser or the Global

object of a Node.js module.

An object can hold memory in two ways:

 Directly by the object itself

 Implicitly by holding references to other objects, and therefore preventing those objects from

being automatically disposed by a garbage collector (GC for short).

2.4 Shallow Sizes

This is the size of memory that is held by the object itself. Typical JavaScript objects have some memory

reserved for their description and for storing immediate values. Usually, only arrays and strings can have a

significant shallow size. However, strings and external arrays often have their main storage in renderer

memory, exposing only a small wrapper object on the JavaScript heap.

2.5 Retained Sizes

This is the size of memory that is freed once the object itself is deleted along with its dependent objects

that were made

unreachable. A distinguished set of objects are assumed to be reachable: these are known as the roots.

Typically, these include all the objects referenced from anywhere in the call stack (that is, all local

variables and parameters in the

functions currently being invoked), and any global variables.

2.6 Garbage Collection

A garbage collector needs to be able to locate objects in the application which are live, as well as, those which

are considered dead (garbage) and are unreachable.

If garbage collection (GC) misses any dead objects due to logical errors in your JavaScript then the memory

consumed by these objects cannot be reclaimed. Situations like this can end up slowing down your application

over time.

This often happens when code is written in such a way that variables and event listeners you don’t require are

still referenced by some code. While these references are maintained, the objects cannot be correctly

cleaned up by GC.We need to check and nullify variables that contain references to DOM elements which

may be getting updated/destroyed during the lifecycle of your app. Also, check object properties which

may reference other objects (or other DOM elements).

3. LEAK PATTERNS

Due to the nature of JavaScript and browser memory management for JavaScript and DOM objects,

carelessly coded JavaScript causes browser memory leaks. Two well- known patterns cause these leaks [3]

3.1 Circular References

Circular references are the root cause of nearly every leak. Generally, IE can handle the circular references

IJITKM Special Issue (ICFTEM-2014) May 2014 pp. 101-106 (ISSN 0973-4414)

103

and dispose of them correctly in the JavaScript world. The exception occurs when DOM objects are

introduced. Circular references occur and cause the DOM node to leak when the JavaScript object holds the

reference to the DOM element, and the DOM element's property holds the JavaScript object. Listing 1

shows a code sample that's often used to demonstrate this problem in articles about memory leaks.

A circular reference is formed when two objects reference each other, giving each object a reference count

of 1. In a purely garbage collected system, a circular reference is not a problem: If neither of the objects

involved is referenced by any other object, then both are garbage collected. In a reference counting

system, however, neither of the objects can be destroyed, because the reference count never reaches zero. In a

hybrid system, where both garbage collection and reference counting are being used, leaks occur because the

system fails to identify a circular reference. In this case, neither the DOM object nor the JavaScript object

is destroyed. Listing 1 shows a circular reference between a JavaScript object and a DOM object.

<scripttype="text/javascript">

document.write("The circular
references!");

var object;
window.onload = function(){

obj=document.getElementById(" MyDivElement");

document.getElementById("MyDi vElement").expandoProperty=obj;

obj.bigString=new Array(2000).join(new Array(39393).join("JSJWUW"));

};

</script>

In the above listing, the JavaScript object obj has a reference to the DOM object represented by DivElement.

The DOM object, in turn, has a reference to the JavaScript object through the expandoProperty. A circular

reference exists between the JavaScript object and the DOM object. Because DOM objects are managed

through reference counting, neither object will ever be destroyed.

3.2 Closures in Web2.0

One of JavaScript's strengths is that it allows functions to be nested within other functions. A nested, or inner,

function can inherit the arguments and variables of its outer function, and is private to that function.

JavaScript developers use inner functions to integrate small utility functions within other functions [3].

Closures cause memory leaks because they create circular references without being aware of it. The parent

function's variable will be held as long as the closure is alive. Its life cycle goes beyond the function scope,

which will cause a leak if not handled carefully.

<script type="text/javascript">

document.write("The
closures");

window.onload=

function parent(A)
{

var a = A;
return function

innerFunct (paramB)

{
alert(a +" "+ B);

};
};
var x = parent("the outer value");

x("inner value");

</script>

In the above listing innerFunct is the inner function defined within the parent function parent. When a call

is made to parent with a parameter of outer x, the outer function variable a is assigned the value outer x. The

function returns with a pointer to the inner function innerFunct, which is contained in the variable x.

https://www.ibm.com/developerworks/library/wa-sieve/#listing1

IJITKM Special Issue (ICFTEM-2014) May 2014 pp. 101-106 (ISSN 0973-4414)

104

It is important to note that the local variable a of the outer function parent will exist even after the outer

function has returned. This is different from programming languages such as C/C++, where local

variables no longer exist once a function has returned. In JavaScript, the moment parent is called, a scope

object with property a is created. This property contains the value of paramA, also known as "outer x".

Similarly, when the parent returns, it will return the inner function innerFunct, which is contained in the variable

x. Because the inner function holds a reference to the outer function's variables, the scope object with property a

will not be garbage collected. When a call is made on x with a parameter value of inner x -- that is, x("inner x") -

- an alert showing "outer x innerx" will pop up.

Closures are powerful because they enable inner functions to retain access to an outer function's variables even

after the outer function has returned. Unfortunately, closures are excellent at hiding circular references between

JavaScript objects and DOM objects.

4. AVOIDING MEMORY LEAKS
Memory leaks can be very hard to indentify. Most of the time

this is because the amount of memory that leaks is so small we won’t see it all at once on the process task

manager. There are things we can do that will prevent memory leaks or at least allow the page to be fully

collected when the page reloads. It seems in my research that it is very hard to get 100% leak free in all

browsers. But we will be able to reduce the amount of leaks to a minimal level. With that in mind it will help us

to know the best practices to avoid the major risk of memory leaks.

Leaks require prevention in general, not reactive repair on a running system. If a developer's JavaScript code

somehow misses a leak, it is not possible to automatically fix it [on the user's system after the fact]. If a

developer did have a big table that carelessly stored references to all objects ever created, of course, you might

treat it as a cache and purge old object references from it, but that's not really a leak, just a cache that needs

careful tuning and reclamation policy implemented by your JavaScript.

Memory tools can also help. A memory profiler can show which objects are taking up the most memory.

Then, a garbage-collection tracing tool can tell which program values are causing those objects to be kept.

4.1 Breaking the circular references
This is to make the JavaScript object obj null, thus explicitly

breaking the circular reference

document.write("Breaking the circular reference");

window.onload=function outer(){

var obj = document.getElementById("element");

obj.onclick=functioninner()

{

alert("Avoid the leak");

obj.bigString=new Array(2828).join(new Array(1000).join("SJSJS"));

obj = null; //This

breaks the circular reference

};

4.2 Avoiding the closures

Closures are functions that refer to independent (free)

variables.

IJITKM Special Issue (ICFTEM-2014) May 2014 pp. 101-106 (ISSN 0973-4414)

105

document.write("Avoiding the closures!"); window.onload=function()

{

var obj =

document.getElementById("element");

obj.onclick = noLeak;

}

function noLeak()

{

alert("Avoid the leak");

};

}

4.3 Nullifying the javascript reference to a

DOM node.

Assume another repository that you don't know about is available and holding the references to your widgets,

and that, for some reason, it can't be cleaned. Removing the widget will cause the DOM node referenced by it

to be orphaned.

widgetArray = [];

widgetRepo = {};

function createWidget() {

var container =
dojo.byId("widgetContainer");

var widget = new
leak.sample.MyWidget(container); widgetArray.push(widget); widgetRepo[widget.ID] =

widget;
}

4.4 Nullify the DOM references
The solution is to nullify the DOM node references during

clean-up. It is considered a good practice to add these nullify statements when possible since it won't harm

your original

function.

the destroy method of MyWidget class

destroy: function() {
dojo.destroy(dojo.byId(this.I D));

this.domNode = null;
this.container = null;}

4.5 Setting innerHTML

Memory leaks can be caused if we aren't careful with how we set innerHTML with JavaScript.

var elem =

document.createElement(“DIV”);

// now the node is not orphan anymore document.body.appendChild(elem);

elem.innerHTML = “no leak”;

5. CONCLUSION
In this paper we have presented patterns that lead to memory leaks in JavaScript applications, approaches to

finding and fixing them, and recommended practices for avoiding them in the first place.

If we are developing client-side re-usable scripting objects, sooner or later we will find ourselves spotting out

memory leaks. Chances are that our browser will suck memory like a sponge and we will hardly be able to

find a reason why our Web 2.0 responsiveness decreases severely after visiting a couple of pages. This

IJITKM Special Issue (ICFTEM-2014) May 2014 pp. 101-106 (ISSN 0973-4414)

106

paper demonstrates some of the common memory leak patterns to look for, and show how to work around

them.

6. REFERENCES
[1] Schlueter. Memory leaks in Microsoft Internet Explorer,

2007. URL - http://foohack.com/2007/06/msie-memory- leaks/

[2] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh. Using static analysis to find

bugs. IEEE Softw., 25 (5):22–29, Sept. 2008.

[3] A. Bhattacharya and K. S. Sund. Memory leak patterns inJavaScript.

http://www.ibm.com/developerworks/web/ library/wa-memleak/, 2007.

[4] M. Jump and K. S. McKinley. Cork: Dynamic memory leak detection for garbage-collected

languages. POPL

’07, pages 31–38, New York, NY, USA, 2007. ACM.

[5] S. Cherem, L. Princehouse, and R. Rugina. Practical memory leak detection using guarded value-

flow analysis. SIGPLAN Not., 42(6):480–491, June 2007.

[6] Dr. Puneet Goswami paper titled “Security in Cloud Reference Models and Secure Identity

Management Mechanism” 1st International IBM Cloud Academy Conference ICA CON 2012 on

Thursday and Friday, April 19-20, 2012 9:00 AM - 5:30 PM at the IBM Employee Activity and Fitness

Center Building 400, Cornwallis Drive Research Triangle Park, North Carolina Organized by :

The IBM Cloud Academy and IBM Centers for Advanced Studies (RTP, Chicago, Heritage Corridor,

Tucson, Florida).

[7] Puneet Goswami “Intelligent Web Crawler: software technology for the new millenium”. Published at

the proceedings of national conference Israna Panipat on 16
th
 and 17

th
 of march2006

http://foohack.com/2007/06/msie-memory-leaks/
http://foohack.com/2007/06/msie-memory-leaks/
http://www.ibm.com/developerworks/web/

