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NOVEL WATERSHED SEGMENTATION METHOD FOR STUMPY
BOUNDARY DETECTION FOR IMAGE CLASSIFICATION
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Image segmentation is one of the important areas of current research. This paper presents a novel approach for creation of
topographical function and object markers used within watershed segmentation. Typically, marker-driven watershed
segmentation extracts seeds indicating the presence of objects or background at specific image locations. The marker locations
are then set to be regional minima within the topological surface and the watershed algorithm is applied. In contrast, our
approach uses two classifiers, one trained to produce markers, the other trained to produce object bound-aries. As a result of
using machine-learned pixel classification, the proposed algorithm is directly applicable to both single channel and multichannel
image data. Additionally, rather than flooding the gradient image, we use the inverted probability map produced by the
second aforementioned classifier as input to the watershed algorithm.
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1. INTRODUCTION

The two key operations in computer vision are segmentation
and pixel grouping. While many image segmentation
algorithms exist, when objects of the same predefined class
are in close proximity to one another, pixel grouping is
necessary to cluster the classified pixels into objects. The
watershed algorithm [2,4,5] is commonly used within the
unsupervised setting of segmenting an image into a set of
non overlapping regions. The framework of mathematical
morphology considers grayscale images to be sets of points
in a 3-D space, with the third dimension constituting gray
level image intensity [1, 8]. This topographical analogy
respectively considers light and dark image areas as the hills
and valleys of an image landscape. To segment a given
image the “landscape” is flooded, whereby water flows from
high altitude areas along lines of steepest descent until it
reaches some regional minimum. The watersheds or
catchment basins of the image are the draining areas of its
regional minima. These areas are separated by lines called
watershed lines. Unfortunately, the segmentation produced
by a naive application of the watershed algorithm is
oftentimes inadequate: the image is usually over-segmented
into a large number of mi-nuscule regions. The most
common remedy is to use markers for identifying relevant
region minima (e.g., [3, 4, and 7]). By setting marker
locations as the only local minima within the watershed
image, the number of regions can be automatically
controlled. Unfortunately, finding markers can be
problematic and is one of the focal points of this paper. A

particular approach to finding and utilizing markers can be
found in [10], where researchers used a naive Bayes classifier
to classify pixel groups as internal markers. In turn, those
markers together with the magnitude of the gradient image
were used by the watershed algorithm to identify and
delineate colored cell nuclei unfortunately the algorithms
presented in the aforementioned publications are specific
to RGB color space and may not generalize to other image
modalities. In contrast, the proposed watershed segmentation
algorithm works on images with arbitrary number of
channels- and, hence, is applicable to grayscale, color, and
hyper-spectral data. In more detail, this paper extends the
previously aforementioned work on machine learned marker
selection and watershed segmentation in the following ways.

Rather than using the raw pixel values to train classifiers,
as was done in [6, 10], we expand the feature space by
creating feature maps using standard image processing
techniques. In turn, the use of an extended feature set results
in very high pixel classification accuracy.

Two distinct sets of classifiers are trained to specialize
in (a) marker identification and (b) object-background
boundary delineation.

A probability map produced by the object-background
classifier, rather than the conventional intensity or gradient
magnitude image, is first seeded with the output of the
classifier trained to identify markers and subsequently used
as the topographic function within the watershed
segmentation.

Experimental results demonstrate that the proposed
algorithm outperforms the state-of-the-art algorithms as well
as simpler variants of novel.
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2. PIXEL CLASSIFICATION

While the aforementioned approaches have merits, they are
primarily designed for a specific domain. In contrast, our
goal is to develop a more general solution, applicable to
many image processing domains. One data-driven image
segmentation approach is to machine learn a pixel classifier
that assigns the probability of a pixel belonging to a given
class. Formally, let (i, j) index a discrete set of sites on a
spatially regular lattice

{( , ) |1 ,1 }S i j i N j M= ≤ ≤ ≤ ≤ (1)

For an input image I and corresponding image labeling L,
let I(i, j) and L(i, j) • (0,1} respectively denote the (grayscale)
values of image pixels and corresponding (binary) labels.
To elaborate, label L(i, j) = 0 denotes that the image pixel
I(i, j) is labeled as background, while L(i, j) = 1 denotes a
pixel belonging to the target object class. In general, our
goal will be to produce a probability map P

( , ) [ ( , ) 1 | ( , )] ( , )P i j P L i j I i j i j S= = ∀ ∈ (2)

Unfortunately, as a result of the intensity overlap between
classes, using just raw pixel values for classification in (1)
results in very poor segmentation. Hence, for most
segmentation applications it is insufficient to simply treat
individual pixels as independent identically distributed. As
a result, feature extraction techniques are needed to produce
a set of feature maps describing local image features.

3. NOVEL WATER SHED METHOD

For each lattice site we denote by f(i, j) the extracted feature
vector and attempt to train a classifier to produce a
probability map conditioned on the feature vectors rather
than just the raw grayscale values

( , ) ( , ) 1 ( , ) ( , )P i j P L i j f i j i j S = = ∀ ∈  (3)

The form p[y = l|x] in (3) defines an arbitrary binary
proba-bilistic discriminative classifier. One particular choice
for mod-eling the aforementioned class conditional,
commonly used in statistics, is the generalized linear model
[9]. To model the conditional likelihood that a pixel belongs
to a target class, we use the logistic link function within the
generalized linear model defined as
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where w = {w
0
, w

1
} are the model parameters, which can be

estimated by maximizing the likelihood of the training data
using standard nonlinear optimization routine h

w
 denotes

the trained pixel classifier. From a Bayesian perspective,
ideally one would want to integrate over the model
parameters using some prior distribution. However, this
usually interact able and is approximated in practice. In this
work, bagging [6] is used, whereby we simply draw n

samples from the underlying probability distribution by
learning a set of classifiers, Ω = {h

w1
,… h

wn
 }, each optimized

over a different subset of the training data. The outputs of
each classifier are subsequently merged by uniform
averaging
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Using (4) and (5) to model the probability map elements in
(3), we get

P(i. j) = p [L(i, j) = 1| f(i, j)]

 
1

( ( , ))
k

n

w
x

h f i j
n
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= HΩ (x) (f (i, j)) (6)

To simply the notation, we will refer to HΩ simply as h in
the remainder of the paper.

For most nontrivial domains, the outlined data-driven
approach can usually outperform unsupervised segmentation
algorithms, provided (a) relevant features have been
identified, and (b) the machine learning technique utilized
to build the conditional probability model in (3) is capable
of utilizing the extracted features. Unfortunately, even if the
method exhibits good generalization performance on images
unseen during the training phase, objects of the same class
that are in close spatial proximity, to one another will be
merged together into a single object. Hence, while the
machine learned classifier may have a high pixel
classification score, due to the unresolved object-object
boundaries, the resulting object labeling can still be very
poor.

4. MODIFIED NOVEL WATERSHED METHOD

A popular approach to resolve object-object boundaries is
to use region growing methods such as watershed. However,
to be effective these methods require object markers. Using
ad hoc rules to extract markers requires a priori knowledge
of either, (a) the number of objects within an image, (b)
specific image properties, or (c) object locations. In either
case, the parameters governing, marker extraction tends to
vary from image to image, again motivating the use of
machine learning approaches for robust identification of
object markers. To improve the situation, we proposed
training a marker identification classifier, h

marker 
on ground

truth modified by morphological erosion. Let

L
eroded

 = LΘB (7)

Denote the erosion of label image L by a suitably chosen
structural element B. The output of h

marker
 denoted as P

marker.

is given by

P
marker

 (i, j) = P[L
eroded

 (i, j)| f (i, j)]
= h

marker
 (f (i, j)) (8)
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where, h
marker

 is derived in the manner analogous to (6). To
make the notational distinction more pronounced, we
henceforth denote by h

region 
and P

region
 the classifier trained

on the standard ground truth and the resulting probability
map. As the experimental results will demonstrate, the h

marker

classifier is overly conservative and produces superior object
markers as compared to thresholding P

region
 using higher

values of T. Having described both P
region

 used to delineate
object-background boundaries, and P

marker
 used to identify

object markers, we turn our attention to the topological
surface utilized by the watershed algorithm. However, since
the probability maps themselves form a topological surface.
We can once again utilize a machine learning approach.
Intuitively, the highest intensity values within P

region
 image

correspond to pixels with the highest probability of being
part of the target class, hence using the inverted probability
map, 1–P

region
, can be advantageous because the

aforementioned high probability regions will be flooded
first. Since we use multiresolution features, these high
probability peaks occur near the object center.
Unfortunately, more than one local maximum may be
present within large sized objects, thereby motivating the
need for markers. To produce a topology amenable to the
watershed algorithm, we invert the probability map P

region

and set the regional minima to correspond with marker
locations extracted from the P

marker
 probability map by hard

thresholding.

5. EXPERIMENTAL RESULTS

Table1
Comparison of Novel Watershed Method and Modified Novel

Water Shed

Images novel water shed Modified Novel watershed

fig1 2.0201 1.1648

fig2 2.3656 1.5236

fig3 2.0295 1.3786

fig4 1.9241 1.0569

Figure 1: Original bmp - Novel Water Shed -Modified Novel
Watershed

Figure 2: Original bmp - Novel Water Shed - Modified Novel
Watershed

Figure 3: Original bmp - Novel Water Shed - Modified Novel
Watershed

Figure 4: Original bmp - Novel Water Shed - Modified Novel
Watershed

Graph1: NWM (Novel Watershed Method)

6. CONCLUSIONS

Novel Watershed Segmentation proposed a principled
approach, based on machine learned pixel classification, for
extracting: (a) object markers, (b) object-background region
boundaries, and (c) topological surface used by the novel
watershed algorithm. We demonstrated that while region
classifiers produce probability maps which successfully
identify pixels belonging to objects of interest, there is not
enough information to group the classified pixels into
objects. As a result, the object labeling is poor when objects
of the same class are in close proximity to each other. In
other words, simply thresholding the probability map is not
sufficient to delineate the individual objects of interest. To
improve the pixel grouping process we turned our attention
to watershed segmentation, which requires markers in order
to be successful. Extracting internal markers from the
aforementioned region probability map by using higher
thresholds still results in a poor object labeling.

The first contribution of this approach was to expose
the benefits of ground truth manipulation. By training a
classifier using eroded ground truth, the resulting probability
maps produce superior object markers. By seeding, the
probability map produced by a region classifier and using
the resulting inverse for watershed segmentation state-of-
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the-art performance was achieved. Hence, the second
contribution of this paper is to demonstrate the use of the
inverted probability map for flooding via the watershed as
an alternative to the gradient image. This method is tested
on multiresolution images and obtained better results than
conventional watershed methods. However this method is
not suitable for uniform textured images like sand, cloth
textures, leather and tree barks.
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