
International Journal of Information Technology and Knowledge Management
January June 2009, Volume 2, No. 1, pp. 199-202

A FRAMEWORK FOR ACHIEVING BETTER LOAD BALANCING AND JOB
SCHEDULING IN GRID ENVIRONMENT

K. Mukherjee* & G. Sahoo**

Traditional multiprocessors Super computer systems do have certain constraints viz computing elements, storage space etc.
These constraints can be minimized in Grid environment provided a proper job scheduling and load balancing algorithm is
available. The existing job scheduling and load balancing are either in fully centralized or fully decentralized in nature. In
this paper, we propose a scheme that focuses on both Local Area Grid and Wide Area Grid efficiently. If Local Area Grid is
overloaded then only jobs are transferred to wide Area Grid and hence a well job monitoring is carried out to achieve better
parallelism in Grid Environment that saves valuable clock cycles needed for job execution. The proposed algorithm has been
studied by conducting simulation using Remote Method Invocation (RMI) paradigm.

Keywords: Grid, Hierarchical Agent Framework, Load Balancing.

* Department of Computer Science & Engineering., B. I. T Mesra
Extension Centre Lalpur, Ranchi, Jharkhnad, India, E-mail:
kmukherjee@bitmesra.ac.in

** Dept. of IT, BIT Mesra, Ranchi, Jharkhnad, India. E-mail:
gsahoo@bitmesra.ac.in

1. INTRODUCTION

A Grid is a distributed collection of computing and data
resources, which is shared by entities in a virtual
organization. Grid computing is an emerging computing
paradigm wherein authorized users can access and use
distributed computing recourses by submitting jobs to the
Grid and getting result back from the Grid. Grid System
coordinates recourses that are not subject to centralized
controlling and uses open general purpose protocols and
infrastructures. It is of-course, a type of parallel and
distributed system that enables sharing, exchange, selection
and aggregation of geographically distributed autonomous
and diverse recourses, owned by diverse organization or
owners. Computational Grid addresses computationally
problems on relatively small data sets. Data Grid addresses
data intensive application applications that deal with the
evolution and mining of large amounts of data in the terabyte
and beta byte range. Computational Grid [1,6] are typically
a conglomeration of various resources with different owners
but make it possible for users to develop complex
applications that access remote sites (nodes). Each of these
sites could be a uni-processor machine, a symmetric
multiprocessor clusters, a distributed memory processor
system or a massively parallel super computer. Thus , any
Grid system has enormous potential in view of
computations, Data storages etc. with the multitude of
resources of Grid, a proper scheduling and efficient load
balancing across the Grid can lead to improve overall system
performance and a lower turn-around time for individual

jobs. Hence, an efficient job scheduling algorithm is at most
needed to address the diverse resources of Grid viz CPU,
shared memory, large disk frame, distinct I/O channels and
software licenses that can be independently allocate different
jobs. The Organization of this paper is as follows: Related
work is described in 2, section 3 gives details of existing
Grid System model; section 4 gives our proposed Grid
Framework, proposed algorithm and details of the
experimental setup and result would be given at the next
issue of this journal. Section 5 concludes with a direction of
the future work.

2. RELATED WORK

Scheduling in Grid has been extensively studied in different
contexts e.g. scheduling for computational Grid [9][10],
decoupled computational and data scheduling [4] and
scheduling based on economic models [16]. Economic
models e.g. scheduling model used in Nimrod-G [17] has
used factors like resources cost, user priority, job deadline,
user preference, resource architecture etc in making
scheduling decisions. Ranganathan et al. [4] have proposed
a synchronous job scheduling . They have emphasized high
performance computing. Takefasa et al. [16] has studied
deadline scheduling for client-server system on the
computational Grid. Casahora et al. [17] has described
heuristics for scheduling parameter sweep applications in
computational Grids. Park et al. [5] has described cost
models to schedule jobs on the Grid to minimize response
for the user and again they emphasize user response time
optimization. Stockinger et al.[6] has described a cost
model for distribution and replicated data sources. Min et
al. [21] and Simit et al.[18] have discussed advance
reservation of resources in their scheduling algorithm to
satisfy the QoS requirements of the user. Subrami et al.
[20] has evaluated some centralized and distributed

��� �������	
�		���
�������

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\42_K MUKHERJEE_G SAHOO

scheduling decisions for a computational Grid and has
proposed a scheme which uses redundant distribution of a
job to different sites to reduce average job slow down and
turn-around time. Manish Arora, Sajal K. Das and Rupak
Biswas [13] have proposed a decentralized scheduling and
load balancing algorithm for heterogeneous Grid
environment.

3. EXISTING SYSTEM MODEL OF GRID

The existing system model of Grid, consists of sites which
have both computing and data storage resources. The
different sites of Grid are connected by a wide area network
(WAN) and Local area network (LAN). The time for data
transfer within the local network (Intrusive Data Transfer)
are negligible in comparison to both job execution time
and interstice data transfer time. Again, there are two
important aspect of any wide area network Grid, first its
transfer [4, 5] and second its location [8, 9] polices. The
transfer policy decides if there is a need to initiate load
balancing across the system, is typically threshold
balancing[13]. The location policy selects a partner node
for a job transfer transaction and location policy locates
complementary nodes to or from which a node can send
or receive workload to improve overall system
performance [13]. Similarly, local area Grid is built on PC-
based clusters to form a Grid computing environment and
built over multiple Linux PC clusters by using Globus
Toolkit and Sun Grid Engine [21]. Each such cluster has a
master node and in case of Sun Grid Engine (SGE), the
master node executes SGE master daemon that manage
and monitor incoming jobs. Each slave node executes SGE
slave daemon to execute incoming job only. These PC-
based clusters are located in different locations of premises.
In the entire software structure of this type of system, the
Grid environment available is a basic environment
construction, where it is worth nothing that Globus Toolkit
serves as a middleware to take care of message
communication and information exchange in the Grid
environment. Generally, the graphic user interface
supported by java, which is highlighted with its inter-
platform characteristics, the debuted interface suits all
systems for successful operation.

4. FRAMEWORK OF PROPOSED GRID

A Grid consists of a local Grid (simple composite elements
(scm) or clusters as they are commonly called) and wide
area Grid [21]. The local Grids are richly connected by
relatively homogeneous collection of base system elements
(i.e. computing elements, memory, computation and
storage). They are often–housed within single administrator
domains and in many cases are thought of as a single system
[21]. Local Grids are building blocks for wide-area national
and international Grid[21]. Our computational Grid system
is shown in fig. 1.

Wide Area Grid

The local Grid can use resources and software to implement
the external properties of the composite elements affecting
its utility or integration into larger Grid. The local Grid can
use resources and software to implement the external
properties of the composite elements affecting its utility or
integration into larger Grid. Local Grids form the basis for
larger Grids. Thus their evolution is an integral part of the
challenges in building larger Grid. The frame work of our
proposed Grid is shown in figure 2. Here, we have focused
on both the local Grid as well as the wide area Grid. But the
load balancing algorithm is written in view of local Grid
only. In this paper we have focused only on parallel
processing aspect of local Grid (cluster based).The
framework of our proposed cluster based parallel processing
be shown in Fig. 2.

Figure 2: Framework of Our Proposed Cluster
Based Parallel Processing

Figure 1: Computational Grid System

When execution of a job starts, Node Agent, as shown
in Fig. 4, collects monitoring data, on the basis of this data

Resource Monitor
Module

Parallel
Module

Task Partion
Module

Task schedule Module

Load Balance
Module

Sequential
Module

���
��	��
����
�����	���
��	��	
��������������
������������	�����
����

���	���
���	�� ���

Com6\D:\Journal-2009\11-IJITKM, 2009\42_K Mukherjee_G Sahoo

and the performance property specification (defines the
condition, confidence and the suavity for each property), it
evaluates the serviettes of specified performance details
report (shown in figure 3). A Turning Agent (TA) which is
invoked by the NA, is responsible for performing any local
tuning action, so that any performance bottleneck or
performance problems can be removed. The TA accepts the
performance details report from the NA and decides what
actions to be taken after consulting the performance property
specification and the performance tuning process
specification. Performance tuning process specification
stores recommendation regarding action, which may be
taken for every performance problem depending upon their
serviette. The process specification is basically an expert
knowledge base, which may be created and stored on a
particular recourse provider. The TA generates a
performance tuning report, shown in Fig 3. We create a
subclass of the process specification for every subclass of
performance property. Thus in our current implementation,
InsufficientParallelismProcessSpecificatio is a subclass of
the class PerformancePropertyProcessSpecification, which
specifies the analysis process of the Insufficient parallelism
property and LoadImbalanceProcessSpecification is another
subclass, which specifies the analysis process of the
LoadImbalanceproperty. Similarly,
InsufficientParallelismTuningProcess specification is a
subclass of the class property. Insufficient parallelism and
Load Imbalance Tuning Process Specification is another
subclass of the same class that specifies the tuning process
for the property LoadImbalance. A class diagram containing
the agent class and specification is shown in Fig. 5. In the
current implementation, we have implemented the

specification, computations and tuning related to
InsufficientParallelism property. Analysis of this property
and tuning the job to avoid a performance related to this
property has been shown in agent interaction sequence
diagram (Fig. 6)

Figure 5: Class Diagram for Node Agent and Tuning Agent

InsufficientParallelismTuningProcessSpecification

no_procr
avail_procr

tuneInsufPrallelism()

LoadImbalanceTuningProcessSpecification

schedule_type
procr_exec_time

tuneLoadImbalance()

PerformancePropertyProcessSpecification

no_procr
tolerance
measured_data_size
actual_data_size

InsufficientParallelismProcessSpecification

execution_time
instr_count

analyseInsufParallelism()

LoadImbalanceProcessSpecification

schedule_type
procr_exec_time

analyseLoadImbalance()

JobMetaData
loop_id
start_line
end_line
nest_level
measured_loop_bound
loop_shape
actual_loop_bound
measured_prop_total

NodeAgent

BSLA
JobMetaData
ResourceStatus
ExecutionStrategy
PerfData
PerformanceDetails

readBSLA()
readJobMetaData()
checkResourceStatus()
checkLoopShape()
getPropName()
getReadyJEM()
getPerfData()
analyseJob()
preparePerformanceDetails()
startTA()

PerformancePropertySpecification

propertyName
condition
confidence
severity

checkCondition()
computeSeverity()

PerformanceTuningProcessSpecification
remaining_job

TuningAgent

PerformanceDetails

checkResourceAvailability()
getPerformanceDetailsNA()
tuneJob()
prepareTuningReport()

Figure 3: Tuning Agent

Figure 4: Node Agent

Figure 6: Agent Interaction

5. CONCLUSION

In this paper, we have presented a better load balancing and
job scheduling in Local Area Grid only. It highlights the

��� �������	
�		���
�������

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\42_K MUKHERJEE_G SAHOO

interaction and exchange of information among the agents
for collecting data, analyzing and improving the
performance by application of local tuning actions in local
grid Area. It also discusses the implementation of some of
them. This paper highlights the effectiveness of the
framework by demonstrating the performance improvement
through tuning and showing that the agent control overheads
are negligible even when multiple jobs are submitted
concurrently onto the same resource. Proposed algorithm
and details of the experimental setup and result would be
given at the next issue of this journal In future work, we
will extend our Grid framework from Local Area Grid to
Wide Area Grid. The job scheduling algorithm, load
balancing algorithm would be in view of wide area Grid
and we will introduce Load_balance_Wide_Area_Grid
procedure in our future work. In future work, we will do
more implementation of complex parallel algorithm.

REFERENCES

[1] M. Livney and R. Raman, “High Throughput Resource
Management”, in Proceedings of 4th International
Conference on High-Performance Computing , Los
Alamitos, California, IEEE Computer Society, (December
1994), 407–414.

[2] R. F. Freund and T. D. Braun, “Production Throughput as a
High-Performance Computing Meta-task”, The 2002
International Conference on Parallel and Distributed
Processing Technique and Applications (PDPTA 02),
(January 2000), 23–29.

[3] E. G. Coffman, Jr (ed), “Computer and Job-shop Scheduling
Theory”, John Willey and Sons, New York, NY, (1976).

[4] K. Ranganthan and I. Foster, “Decoupling Computation and
Data Scheduling in Distributed Data-Intensive
Applications” in 11th IEEE International Symposium on
High Performance Distributed Computing (HPDC-11),
(2002), 92–100.

[5] S. Park and J. Kim, Chameleon “A Resource Scheduler in a
Data Grid Environment”, the Proceeding of the 3rd IEEE
ACM International Symposium on Cluster Computing and
Grid (CCGRID03), (2003), 39–45.

[6] Balakrishnan, S., S. K. Nandy, A. J. C. Van Germund,
“Modeling Multi-threaded Architectures in PAMELA for
Real-time High-Performance Applications”, in Proceedings
of 4th International Conference on High-Performance
Computing, Los Alamitos, California, IEEE Computer
Society, (December 1997), 407–414.

[7] Bull J. M., M. E. Kambities, “JOMP - an OpenMP -like
Interface for Java”, Proceedings of the ACM2000 Java
Grande Conference, (June 2000), 44–53.

[8] De Rose, L., Y. Zhang, D. A. Reed, “SvPablo: A Multi-
Language Performance Analysis System”, in Proceedings
of 10th Internal Conference on Computer Performance,
(Spain, 1998), 352–355.

[9] Fahringer, T., Gerndt, M., Riley, G. D., and Traiff, J. L.,
“Formalizing OpenMP Performance Properties with ASL”,
In Proceedings of the Third International Symposium on

High Performance Computing, ISHPC (October 16-18,
2000), 428–439.

[10] Foster I., C. Kesselman, J. Nick, and S. Tuecke, “Grid
Services for Distributed System Integration”, IEEE
Computer, (June 2002), 37–46.

[11] Furlinger K., “Scalable Automated Online Performance
Analysis of Applications using Performance Properties”,
PhD. Thesis, 2006 in Technical University of Munich,
Germany.

[12] Furlinger K., M. Gerndt, “A Lightweight Dynamic
Application Monitor for SMP Clusters”, HLRB and
KONWIHR Joint Reviewing Workshop 2004, (March 2004).

[13] Manish Arora and Sajal K. Das and Rupak Biswas”A De-
centralized Scheduling and Load Balancing Algorithm for
Heterogeneous Grid-Environments” Proceedings of the
International Conference on Parallel Processing Workshops
(ICPPW02), (2005), 20–23.

[14] M. Pinedo. “Scheduling: Theory, Algorithm and System”.
Prentice Hall, Englewood Cliffs, NJ, (1995).

[15] R. Buyya, D. Abramson, J. Giddy and H. Stockinger,
“Economic Models for Resource Management and Scheduling
in Grid Computing”, Journal of Concurrency and Computation:
Practise and Experience (CCPE), (2002), 113–124.

[16] A. Takefusa, H. Casanova, S. Matsuoka and F. Berman, “A
Study of Deadline Scheduling for Clint Server System on
Computational Grid”, HPDC, (2001), 12–14.

[17] H. Cansanova , A. Legrand, D. Zagorodnov and F. Berman,
“Heuristics for Scheduling Parameter Sweep Applications
in Grid Environments”, Heterogeneous Computing
Workshop (HCW 2000) , (2000), 13–15.

[18] W. Smith, I. Foster and V. Taylor, “Scheduling with Advanced
Reservation, International Parallel and Distributed Processing
Symposium (IPDPS00)”, (2007), 11–16.

[19] R. Min and M. Maheswaran, “Scheduling Advance
Reservation with Priorities in Grid Computing System”
Thirteen IASTED International Conference on Parallel and
Distributed Processing (PDP01), (2001), 21–27.

[20] V. Subramani, R. Kettimuthu, S. Srinivasan and P.
Sadayappan, “Distributed Job Scheduling on Computational
Grids using Multiple Simultaneous Requests”, Proceeding
of 11th IEEE Symposium on High Performance Distributed
Computing (HPDC02), (2002), 45–48.

[21] R. Min and M. Maheswarn, “Scheduling Advance
Reservation with Priorities in Grid Computing Systems”.
Thirteenth IASTED International Conference on Parallel and
Distributed Computing Systems (PDCS 2001), 21–25, (2001).

[22] Ian Foster and Carl Kesselman “The Grid2 –Blueprint for a
New Computing Infrastructure”, Morgn Kaufmann
Publishers, (2006), 45–48.

[23] DeRose, L., Y. Zhang, D. A. Reed, “SvPablo: A Multi-
Language Performance Analysis system”, in Proceedings
of 10th Internal Conference on Computer Performance,
Spain, (1998), 352–355.

[26] Furlinger K., “Scalable Automated Online Performance
Analysis of Applications using Performance Properties”,
PhD. Thesis, (2006) in Technical University of Munich,
Germany.

