International Journal of Information Technology and Knowledge Management

January June 2009, Volume 2, No. 1, pp. 217-222

MUTATION TESTING IN DATABASE SYSTEMS

Rakesh Kumar®, Surjeet Singh™, & Priyanka Gupta

ke

In competitive and fast moving world of systems, reliability for services is must required attribute. Systems that fail on
regular basis are not at all accepted. Such level of reliability is provided by dependable systems.

Mutation testing can be used to enhance the reliability of a system by keeping a check on completeness and effectiveness of
test cases. This paper discusses need of dependable systems followed by discussions of database systems as dependable.
After that use of mutation operators in procedural, Object Oriented and declarative systems is discussed. At the end some

mutations for SQL Queries are suggested.

Keywords: Dependable systems, Software Testing, Test case generation, Mutation Testing, Mutation operators

1. INTRODUCTION

The ever accelerating trend towards sophisticated computing
systems pervades application areas where computing
services need to function with great reliance. In this over
whelmed world of services & computing, only those systems
are sustainable & worth which can imprint their images on
the hearts of users with the reliability of services they
provide. As general expectations of quality in all types of
systems have increased, it is not at all acceptable to have a
system which fails on regular basis. Failure of systems leads
to high costs for end users & trouncing of business
opportunities for the developers. Such high level of reliance
in all application domains can be provided by Dependable
systems. A dependable system is always Available (ready
for use when needed), Reliable (able to provide continuity
of service while it is used), Safe (does not have a catastrophic
environment consequence on the environment), Secure(able
to preserve confidentiality) [Gill (2002)]

Database systems are an important asset for almost all
businesses. DBMS often persists mission critical data which
is updated by many applications & accessed by thousands
of end users. Same data is used by all levels of management
& it also supports critical business processes & decision
making. Therefore these systems need to be safe, secure &
reliable all of the times & failure is consequential to big
loss of data & business. So dependability is an essential
attribute of such systems.

Different approaches to achieve dependability (Fault
Avoidance, Fault Removal, Fault Tolerance, & Fault

*

Department of Computer Science and Applications,K.U.,

Kurukshetra, Haryana, India. E-mail: rsagwal @ rediffmail.com

** Department of Computer Science, G.M.N. College, Ambala Cantt,
Haryana, India. E-mail: surjeetsagwal @ gmail.com

" Department of Computer Applications, MAIMT, Jagadhri, Haryana,

India. E-mail: gupta800@ gmail.com

Evasion) have been suggested in literature. Fault Avoidance
employs various tools & techniques to design the system in
such a manner that the introduction of faults is minimized.
An avoided fault is never need to be dealt with at later times.
Fault tolerance capability in a system manages to keep it
operating, perhaps at a degraded level in the presence of
faults. Practice of Fault evasion keeps a check on the
behavior of system. When a system deviates from its normal
behavior, system is reconfigured to reduce the stress on a
component with a high failure potential. Fault removal
exploits verification & testing techniques to locate faults.
Removal of a fault is much more expensive than its
avoidance. Testing the systems rigorously to locate &
remove faults can be a handy solution to achieve system
dependability.

2. Ricorous TESTING & ADEQUACY OF TEST CASES

System failure occurs due to the existence of faults in the
system. System reliability is a function of the number of
failures experienced by a particular user of that system.
System dependability can be enhanced by making system
fault free. Testing is a mechanism which shows the presence
of faults in the system. Rigorous testing of the system
ensures quality & testing Quality depends upon Test cases.
Test case can be defined as a set of input values, execution
preconditions, expected results & execution post conditions,
developed for a particular objective or test condition, such
as to exercise a particular program path or to verify
compliance with a specific requirement [Glossary(2006)].

To make a system fault free it is mandatory to have
adequate test cases so that all faults existing in systems can
be revealed. Different test adequacy criteria exists like
statement coverage, branch coverage, path coverage, all uses
& all definitions as found in Patrick, Hall & May (1997).
Basili & Selby (1987), Roper, Miller, Brooks & Wood
(1993), Lott, & Rombach, (1997), Kamsties & Lott (1995)

218

have done statistical & experimental studies to compare the
effectiveness of different testing strategies. It has been
observed that irrespective of the technique used, there are
some residual faults in the software which directly relates
to the completeness & effectiveness of test cases selected.
Therefore there is a strong requirement on the study of
techniques using which the completeness & effectiveness
of test cases can be verified in order to make systems
dependable.

3. MutaTION TESTING & COMPLETENESS OF TEST CASES

According to Grigorjev, F., Lascano, N., Staude, J. (Motorola
Global Software Group) Fault seeding can be used as a valid
methodology for predicting the amount of residual errors.
The methodology relies on the assumption that if we insert
a known and controlled number of seeded errors and
measure the proportion of them discovered by the test
process, that proportion could be used to predict the number
of real errors yet to be discovered. Fault insertion can give
insight as to where testing should be concentrated and how
much should be done. It might also provide insights about
the real error density distribution. One of the widely used
error seeding method is mutation testing, a mechanism to
determine test set thoroughness by measuring the extent to
which a test set can discriminate the program from slight
variations of the program. Demillo, Lipton, & Sayward
(1978) & Budd, Lipton, Demillo, & Sayward, (1980) have
discussed Mutation as a fault-based testing technique.
According to Morell (1990) Fault-based testing aims at
demonstrating the absence of pre specified faults in a
program. Therefore, performing mutation-based testing
helps an implementation to be free from specific faults.

The mutation method is a fault-based testing strategy
that measures the quality/adequacy of testing by examining
whether the test set used in testing can reveal certain types
of faults. Mutation Testing is based on two basic
Assumptions:

(a) The Competent Programmer Hypothesis: In
general programmers are competent. i.e., the
programs they write are nearly correct. The
program differs from a correct version in only a
few small ways.

(b) The Coupling Effect Hypothesis: Large program
faults, particularly those of a semantic nature are
coupled with smaller syntactic faults that can be
detected with mutation testing.

The core of a mutation-based testing is a set of operators,
each of which modifies the source code to inject a fault.
The modified program is known as a mutant. A mutant is
said to be killed relative to a test data set, if at least one test
case generates different results between the mutant & the
implementation. Otherwise, the mutant is live. If no test case

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\45_RAKESH SURJET PRIYANKA

RakesH KumAR, SURIEET SINGH, & PRIvANkA GUPTA

can kill a mutant, then it is either equivalent of the original
implementation or a new test case needs to be generated to
kill the live mutant, a method of enhancing a test data set.
The adequacy of a test data set is measured by a Mutation
Score (MS) (MS = 100 x D/ (N — E) where D = Dead
mutants, N = Number of mutants, & £ = Number of
equivalent mutants). A set of test cases is mutation adequate
if its MS is 100%. Thus mutation helps in verification of
the completeness as well as effectiveness of test cases, which
will further help in making systems dependable.

4. MUTATION OPERATORS IN PROCEDURAL & OBJECT
ORIENTED PARADIGMS

Mutation operators lie at the heart of mutation testing.
Different mutation operators for different languages have
been suggested & worked upon by many researches. Mothra
mutation operators are the most prominent among
procedural languages. Mothra has used 22 mutation
operators for FORTRAN & 70 for C language [Demillo &
Orutt (1991)]. These operators are designed to represent
common mistakes that a programmer might make. These
particular mutation operators represent more than 10 years
of refinement through several mutation systems. These
operators explicitly require that the test data meet statement
& branch coverage criteria, extreme values criteria, domain
perturbation, & that they also directly model many types of
faults. A comprehensive list of Mothra operators can be
found in Offut, Rothermel, Untch & Zapf (1996) & King &
Offutt (1991). Traditional mutation operators are not
sufficient for Object Oriented Systems. In addition to these
operators a list of class mutant operators can be found at
Kim, Clark & Mcdermit (2000). But these were sufficient
to deal with errors within a class only. But there is a need to
emphasize on errors across the class boundaries. For that
purpose again some mutant operators are suggested in
Offutt, Ma & Kwon, (2000) & Ma, Kwon, Offutt (2002).

5. MuTATION OPERATORS IN SQL

To make DBMS dependable, mutation can play a big role
as completeness of test cases can be ensured by mutation.
Different mutation operators for SQL has been proposed
by Tuya et al.(2007). These operators cover a wide spectrum
of SQL features. They are organized in four categories:
Mutations for the main SQL clauses (SC), Mutations for
the operators that are present in conditions & expressions
(OR), Mutations related to the handling of NULL values
(NL), Replacement of identifiers: column references,
constants & parameters (/R).Details of operators are given
in Table 1. A set of SQL mutants based on features present
in a conceptual model of the database schema has been
presented by Chan & Cheung (2005).

Automatic Generation of Mutants of SQL Queries is
also possible with the help of a tool named SQL Mutation

MUTATION TESTING IN DATABASE SYSTEMS

Table 1
SQL Mutation Operators

Operators Description

SC Category

SEL (select clause) Replacement of SELECT/ SELECT

DISTINCT

JOI (join clause) Replacement of JOIN type keywords

SUB (sub query predicates) Replacement of predicates in eRp(Q)
GRU (groupings) Removal of group-by-expressions
AGR (aggregate functions) Replacement of aggregate functions

Replacement of UNION keywords and
removal of participating queries in
UNION

UNI (Query concatenation)

ORD (ordering of the result set) Change in direction and removal of

order-by-expressions.
OR Category

ROR(relational op. replacement) Replacement of relational operators

LCR (logical connector Replacement of logical operators

operator)

UOI (unary operator insertion) Replacement in arithmetic expression
or reference to a number e by —e, e+1,
e-1.

ABS(absolute value insertion) Replacement in arithmetic expression
or reference to a number e by abs(e)

and -abs(e)
AOR (arithmetic op. replacement) Replacement of arithmetic operators

BTW(between predicate) Replacement in conditions like a

BETWEEN x AND y

LKE (like predicate) Replacement and removal of wildcard

characters in a LIKE s
NL Category

NLF (null check predicates) Replacement of NULL keyword

NLS(null in select list) Replacement of column reference ¢ by

function ifnull(c, r)

NLI (include nulls) Forces the true value of the condition

when value is null

NLO (other nulls) Completes the other combinations of

nulls
IR Category

IRC (column replacement) Replacement of column references by
other column references, constants,

parameters

IRT (constant replacement) Replacement of constant by other

constants, columns and parameters

IRP (parameter replacement) Replacement of query parameter
reference by other parameters,

constants and columns

IRH (hidden column replacement) Replacement of column attribute
reference by other columns

Com6\D:\Journal-2009\11-IJITKM, 2009\45_Rakesh Surjet Priyanka

219

as proposed by Tuya, Suarez-Cabal, Riva (2006). This tool
is publicly available on the Web & it can be accessed using
two different interfaces: A Web application to interactively
generate the mutants & a Web service that allows it to be
integrated with other applications developed using different
platforms.

An SQL injection attack consists of insertion or
injection of a SQL query via the input data from the client
to the application. A successful SQL injection exploit can
read sensitive data from the database, modify database data
(Insert/Update/Delete), execute administration operations on
the database (such as shutdown the DBMS), recover the
content of a given file present on the DBMS file system &
in some cases issue commands to the operating system. SQL
injection attacks are a type of injection attack, in which SQL
commands are injected into data-plane input in order to
effect the execution of predefined SQL commands. Mutation
testing has been applied to test such SQL injection
vulnerabilities (SQLIVs) by Shahriar (2008). Nine mutation
operators divided into two categories have been proposed.
The first category consists of four operators that inject faults
into where conditions (WC) of SQL queries. The second
category consists of five operators that inject faults in
database API method calls (AMC).Details are in Table 2.

Table 2
Operators for SQL Injection Vulnerabilities

Category Operators Description

WwC RMWH Remove WHERE keywords & conditions.
NEGC Negate each of the unit expression inside
where conditions.
FADP Prepend “FALSE AND” after the WHERE
keyword.
UNPR Unbalance parentheses of where condition
expressions.
AMC MQFT Set multiple query execution flags to true.
OVCR Override commit & rollback options.
SMRZ Set the maximum number of record returned
by a result set to infinite.
SQDZ Set query execution delay to infinite.
OVEP Override the escape character processing

flags.

All of the above operators are suggested for mutations
in SQL. But the list is not complete. Many more mutations
can be suggested in this field. Some of them are as follows:

(a) Many operators are suggested by tuya et al. (2007)
for select command, but there is no suggestion for
insert commands in SQL. The syntax of insert
command is: “Insert into <table name> (<column
name 1>, <column name 2>) values (<expression
1>, <expression 2>)”. Two mutations can be

220

suggested here regarding the number of
expressions to be used that will check for the data
integrity. (1) Reducing the number of expressions,
(2) Increasing the number of Expressions.

(b) Another mutation can be for the create table
command when a table need to be created from
the existing table. Command syntax is: Create table
<table name> (< column name>, < column
name>) as select < column name>, < column
name> from <table name>. Mutation suggestions
are as follows: (1) Add where clause if it is not
there in from part of command. (2) Remove Where
clause if it exists & further change in conditions in
where clause can be applied. Different mutations
for where clause used in select, delete & update
operations are suggested by Shariar (2008).

(c) Mutation operators for searching range has been
suggested by Tuya et al. (2007). Some additions
to that can be: (1) Replace between by not between
& vice versa. (2) Replace in by not in & vice versa
for comparing purpose.

(d) Some mutations for scalar functions in addition to
suggestions by Tuya et al. (2007) can be: mutations
in numeric functions (1) greatest function can be
replaced by least & vice versa. (2) Truncate, Round
& floor can be interchanged with each other.

(e) Some suggested mutations for string functions are:
(1) lower, upper & initcap can be interchanged with
each other. (2) replace compose & decompose with
each other. (3) Interchange trim, Itrim & rtrim with
each other. (4) replace Ipad & rpad with each other.

(f) Some suggested mutations for conversion functions
are: (1) replace fo-number function with to-char
function & vice versa.

(g) Manipulation of date can be done by to-char
function in which there can be use of TH, SP, SPTH.
Some suggested mutations for date functions: (1)
each of these TH, SP, SPTH can be replaced by
each other.

(h) Suggested mutations for miscellaneous functions:
(1) replace UID by user & vice versa.

(1) In addition to mutations suggested by Tuya et al.
(2007) for Group By clause following can be done:
(1) Having clause can be altogether removed from
group by clause & all other variations on having
clause can be done as suggested by Tuya et al.
(2007). (2) Replacement of group functions by
other group functions in having clause of group.
(3) Replacement of having with distinct & vice
versa. (4) Rollup & cube operators can be replaced
by each other. (5) Replacement of union,

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\45_RAKESH SURJET PRIYANKA

RakesH KumAR, SURIEET SINGH, & PRIvANkA GUPTA

intersection & minus clauses on multiple Queries.
When union converted to intersection or minus,
distinct keyword should be added.

(G) Indexes are used in SQL for fast access. Mutations
on create Index command can be as follows:
(1) Add Unique keyword if it doesn’t exists &
remove if it exists. (2) Add reverse keyword if it
doesn’t exists & remove if it exists. 3) Add bitmap
keyword if it doesn’t exists & remove if it exists.

(k) SQL grants privileges to users for security purpose
with the help of Grant statement. Suggested
mutations are as follows: (1) type of privileges
comes from the set {Alter, delete, index, insert,
select, update }. Each of these can be replaced with
other in object privileges part of the command.
(2) Number of privileges can be increased for some
user & for some can be decreased.

(1) The Data Dictionary is a series of tables & views
that contain information about structures & users in
the database. The data dictionary can be queried for
information about database objects that are owned
or on which access rights have been granted as said
by Bayross (2005). To get the structure information
for object relational as well as object oriented
database tables sample queries can be as: Select
column_name, data_type From
USER_TAB_COLUMNS Where Table_Name =
‘Customer’; & Select attr_name, length,
attr_type_name From USER_TYPE_ATTRS Where
Type_name = ‘Person_ty’; suggested mutations are
as follows: (1) USER_TAB_COLUMNS &
USER_TYPE_ATTRS can be replaced by
ALL_TAB_COLUMNS & ALL_TYPE_ATTRS &
vice versa.

Proposed Mutations operators are summarized in the
following table.

6. CONCLUSION

Database systems are very crucial operative systems. Loss
of data can lead to the loss of whole business; therefore
they need to be dependable. Dependability of systems can
be taken care of by number of techniques. Mutation testing
can provide a good support by keeping a check on
completeness & effectiveness of test cases. It is a fault-based
testing strategy that measures the quality/adequacy of testing
by examining whether the test set used in testing can reveal
certain types of faults. Unlike other fault-based strategies
that directly inject artificial faults into the program, the
mutation method generates simple syntactic deviations
(mutants) of the original program, representing ‘typical’
programming errors. Many mutation operators have proved
their worth in procedural & Object oriented systems. In this
paper the use of mutation operators in procedural, object

MUTATION TESTING IN

Table 3

Suggested Mutation Operators in SQL

Category Op. Description
II(insert into) RNE Reducing number of expressions
INE Increasing number of expressions

CT(create table)

AWC Add where clause if it doesn’t exists in from

part of command

RWC Remove Where clause if it exists & further

SR(searching range) RNB

RNI

NF(scalar functions) RGF

TRF
SF(string functions) LUI
RCD

TLR

RLR

CF (conversion func.) RNC

DF (date functions) RDF

RUU
RHC

MF (misc. functions)
GC(group-by clause)
RGF
RHD
RRC
UIM
Cl(create index) ARU
ARR
ARB

GP(grant privileges) IFS

IDP

DQ(data dictionary query)

change in conditions in where clause can be
applied

Replace not between by between & vice
versa.

Replace not in by in & vice versa.

Greatest numeric function can be replaced
by least & vice versa.

Truncate, Round & floor can be interchanged
with each other

lower, upper & initcap can be interchanged
with each other

Replace compose & decompose with each
other.

Interchange trim, ltrim & rtrim with each
other.

Replace Ipad & rpad with each other

replace fo-number function with ro-char
function & vice versa.

Replace each of TH, SP, & SPTH with each
other.

Replace UID by user & vice versa.

Having clause can be altogether removed
from group by clause & all other variations
on having clause can be done

Replacement of group functions by other
group functions in having clause of group

Replacement of having with distinct & vice
versa

Rollup & cube operators can be replaced by
each other

Replacement of union, intersection & minus
clauses on multiple Queries

Add Unique keyword if it doesn’t exists &
remove if it exists.

Add reverse keyword if it doesn’t exists &
remove if it exists

Add bitmap keyword if it doesn’t exists &
remove if it exists.

Type of privileges comes from the set { Alter,
delete, index, insert, select, update}. Each
of these can be replaced with other in object
privileges part of the command

Number of privileges can be increased for
some users & for some can be decreased.

RDK USER_TAB_COLUMNS &
USER_TYPE_ATTRS can be replaced by
ALL_TAB_COLUMNS & ALL_
TYPE_ATTRS & vice versa.

Com6\D:\Journal-2009\11-1JITKM,

2009\45_Rakesh Surjet Priyanka

DATABASE SYSTEMS

221

oriented, & declarative languages is reviewed. Some new
mutations operators in SQL have been identified. As a
further work, the research is to be carried out in identification
of mutation operators in PL/SQL & orthogonality of
mutation operators in declarative paradigm & in PL/SQL.

(1]

[2]

(3]

(4]

(51

[6]

[71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

References

Budd, T., Lipton, R., Demillo, R., and Sayward, F.
Theoretical and Empirical Studies on Using Program
Mutation to Test the Functional Correctness of Programs
In Proceedings of the Seventh Conference on Principles of
Programming Languages. Las Vegas: ACM Press, (1980),
220-233.

Basilli, V. R. and Selby, R. W. Comparing the Effectiveness
of Software Testing Strategies. IEEE Transactions on
Software Engineering, SE-13, (12), (1987).

Chan, W. K., Cheung, S. C. and Tse, T. H. Fault-Based
Testing of Database Application Programs with Conceptual
Data Model In Proc. of the Fifth International Conference
on Quality Software,2005. IEEE Computer Society Press,
Los Alamitos, California, (2005), 187-196.

Demillo, R., Lipton, R. and Sayward, F. Hints on Test Data
Selection: Help for the Practicing Programmer. /EEE
Computer Magazine, 11, (4), (1978), pp. 34-41.

DeMillo, R. A., and Orutt, A. J. (1991): Constraint-based
Automatic Test Data Generation. IEEE Transactions on
Software Engineering, 17, (9), 900-910.

Gill, N. S. Software Engineering. New Delhi: Khanna Book
Publishing Co.(P) Ltd. 818732517-8. (2002), 425-430.

Grigorjev, F., Lascano, N., Staude, J.: A Fault Seeding
Experience. Argentina: Motorola Global Software Group.

Glossary Working Party, Standard Glossary of Terms used
in Software Testing. The Netherlands: Erick Van Veenendaal,
Version 1.2, (2006).

King, K. N. and Offutt, A. J. A Fortran Language System
for Mutation-based Software Testing. Software-practice and
Experience, 21, (7), (1991), 685-718.

Kamsties, E. and Lott, C. M. An Empirical Evaluation of
Three Defect-Detection Techniques in Proceedings of Fifth
European Software Engineering Conference, (1995).

Kim, S., Clark, J. A. and Mcdermit, J. A. Class Mutation:
Mutation Testing for Object Oriented Programs In
Proceedings of the FMES (2000).

Morell L. A Theory of Fault-based Testing. /[EEE
Transactions on Software Engineering, 16, (8), (1990),
844-857.

Ma, Y., Kwon, Y. and Offutt, J. Interclass Mutation Operators
for Java. In Proceedings of International Symp. On Software
Reliability Engineering, (2002), 352-363.

Offut, A.J., Rothermel, G., Untch, R. H. and Zapf,C. An
Experimental Determination of Sufficient Mutant Operators.
ACM Transactions on Software Engineering Methodology,
5, (2), (1996), 99-118.

Offutt, J., Ma, Y. and Kwon, Y. (2004): An Experimental
Mutation System for Java. ACM SIGSOFT Software
Engineering Notes, ACM Press, 29, (5), 1-4.

222

[16]

[17]

(18]

RakesH KumAR, SURIEET SINGH, & PRIvANkA GUPTA

Patrick, H. Z., Hall, A. V. and May, John H. R. Software
Unit Test Coverage and Adequacy. ACM Computing
Surveys, 29, (4), (1997).

Roper, M., Miller, J., Brooks, A. and Wood M. Towards the
Experimental Evaluation of Software Testing Techniques.
Technical Report, version 1.0., (1993)

Shahriar, H. Mutation-Based Testing of Buffer Overflows,
SQL Injections, and Format String Bugs. Masters of Science

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\45_RAKESH SURJET PRIYANKA

[19]

[20]

Thesis, School of Computing, Queen’s University, Kingston,
Ontario, Canada, (2008).

Tuya, Suarez-Cabal, M. J., Riva, C. D. L. SQL Mutation A

Tool to Generate Mutants of SQL Database Queries In
Second Workshop on Mutation Analysis, (Nov 2006), 1.

Tuya, Suarez-Cabal, M. J., Riva, C. D. L. Mutating Database

Queries. Information and Software Technology,49, (4),
(2007), 398-41.

