
International Journal of Information Technology and Knowledge Management
January June 2009, Volume 2, No. 1, pp. 25-31

OBJECT-ORIENTED METRICS SUITES & COMPLEXITY: A SURVEY

Jitender Kumar Chhabra*, Ravinder Singh Bhatia* & V. P. Singh*

The research in the area of software engineering has progressed a lot during the last decade. The whole stress of development
has shifted from the procedure oriented to object-oriented environment. Most of the software development nowadays is done
in Java, .Net, C++ due to obvious advantages of these languages. This paradigm shift has triggered the researchers to propose
new metrics for the object-oriented software. Recent trend in the object-oriented metrics has been to proposed a set of
metrics in form of metrics suites, which provide a framework to software managers and programmers to control the software
characteristics, especially complexity, which is the most important characteristics of the software and affects almost all
internal and external attributes of software quality. The extensive knowledge of these metrics suites and complexity metrics
is must for all researchers working in any area of object-oriented software engineering. This paper presents an organized
survey of the object-oriented metrics suites and complexity. The last decade has seen development of a set of metrics measuring
different aspects of the software design, which have been discussed in the first category. Then the researchers concentrated
on specific aspects of the quality of the design like coupling, fault-proneness, cohesion, reusability, and complexity. All of
these attributes of the quality have been reported to be largely dependent on the complexity. So the last section gives details
about the metrics proposed in the direction of complexity of object-oriented software.

* National Institute of technology, Kurukshetra-136119 INDIA,
E-mail: jitenderchhabra@rediffmail.com, rsibhatia@yahoo.co.in,
vpsingh72@yahoo.com

1. INTRODUCTION

A critical distinction between software engineering and other
better established branches of engineering is the shortage
of well-accepted measures, or metrics, of software
development. The question is why is software (engineering)
measurement so problematic? One answer may be,
following Roche et al. [1], that software engineering is a
highly complex process producing highly complex products.
Without metrics, the tasks of planning and controlling
software development and maintenance will remain stagnant
in a craft-type mode, wherein greater skill is acquired only
through greater experience, and such experience cannot be
easily communicated to the next system for study, adoption,
and further improvement. With metrics, software projects
can be quantitatively described, and the methods and tools
used on the projects to improve productivity and quality
can be evaluated [2]. The earliest time to control the quality
& productivity etc. of the software is the design phase. The
fundamental reality that “you can not control what you can
not measure” highlights the importance of good design
metrics.

2. TRADITIONAL VERSUS OBJECT-ORIENTED METRICS

The o-o paradigm for software development differs from
the traditional procedure paradigm in many ways. That is
why many authors have opposed the use of traditional
metrics to o-o systems. O-O concepts and abstractions such

as classes, inheritance, polymorphism, overloading,
encapsulation etc. do not get addressed by traditional metrics
[3-8]. Henderson-Sellers [9] noted that “the traditional and
o-o paradigms differ in that the traditional paradigm requires
more effort during the coding and maintenance phases than
its o-o counterpart” and that “the o-o methodologies put
more emphasis on the earlier stages of analysis and design”,
thus implying that a new set of metrics is needed to reflect
those differences. Moreau and Dominick [3] pointed out
that many existing metrics that have been utilized within
conventional programming environments are inappropriate
for evaluating o-o systems in certain circumstances. They
mentioned that traditional LOC metric as an example would
be a poor indicator of development complexity within o-o
systems, since only a small part .of the code is likely to be
unique to an object because of inheritance related reuse.
Other traditional metrics such as McCabe’s cyclomatic
complexity [10] and Halstead’s software science measures
[11] also need to be recalibrated to o-o systems to be
effective [12-13]. At present, it is a well-established fact
that either the new metrics need to be defined along with
the traditional metrics or a new set of metrics is needed to
measure different aspects of o-o software.

In this paper, we present a survey of various design
metrics proposed in the literature for o-o software. Although
the total number of publications in the area of o-o design
metrics in various national/international journals and
conferences may be very large, we have tried to focus on
the main developments in the direction of o-o design
measurement. Two major categories of the publications are
devoted to metrics suites and complexity metrics, each of
which is described below in separate sections.

�� �������	
���	
�����	��
	������	
�����
������
�
��
��
�����

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\6_JITENDER CHHABRA_RAVINDER BHATIA_VP SINGH

3. METRICS SUITES

It has been pointed out that any single metric is inadequate
to capture all aspects of software development process and
respective product [14]. So many researchers have proposed
a set of metrics capturing different aspects of o-o software.
The first well known set of metrics was proposed by Morris
[15], which consisted of 9 metrics named - Methods per
Class, Inheritance Dependencies, Degree of Coupling
between Objects, Degree of Cohesion of Objects, Object
Library Effectiveness, Factoring Effectiveness, Degree of
Reuse of Inheritance Methods, Average Method Complexity,
and Application Granularity. These metrics provided a new
direction for object-oriented (referred as o-o afterwards)
software measurement, but these metrics were not tested
and thus lacked in validation. Moreau & Dominick [3]
suggested three metrics for o-o graphical information
software – Message Vocabulary Size (MVS), Inheritance
Coupling (IC), Message Domain Size (MDS). These 3
metrics needed clarifications such as what exactly is meant
by sending messages or how the metrics are to be computed.
Moreover the metrics were neither tested nor validated [3].
Many metrics were proposed during 1990-92 for
measurement of different design characteristics of o-o
software [16-18], but all of these neither offered a theoretical
base or any validation attempt using empirical data.

Chidamber & Kemerer (referred as C & K afterwards)
[19] proposed a preliminary set of metrics in 1991. These
metrics were tested and measured by some authors [7, 20,
21], but these measurements were done on students’ projects
only instead of some commercial applications, and hence
needed further investigations. Then came the most widely
discussed metrics suite for object-oriented design [22].
C & K [22] proposed six design metrics – Weighted
Methods per Class (WMC), Depth of Inheritance Tree (DIT),
Number of Children (NOC), Coupling Between Object
classes (CBO), Response For a Class (RFC), & Lack of
Cohesion in Methods (LCOM). The empirical data of the
metrics was also provided with the help of o-o libraries of
two commercial organizations and the theoretical ground
was provided based on Weyuker’s nine axioms [23], out of
which two properties (number 7 and 9) were not satisfied
by any of the proposed metrics. For these two properties,
C & K concluded that these are not applicable to o-o
software [22]. The non-applicability of property 9 has also
been generalized and proved by Gursaran [24] with
reference to inheritance metrics based on a directed graph
abstraction of the inheritance structure. But their proof was
found to have some discrepancies in case of some extreme
circumstances [25].

Churcher and Shepperd [26] pointed out that definitions
of some of the basic direct counts used in metrics of [22]
are imprecise, which could have an impact on the defined
metrics. Their main concern was with the number of
methods in a class count, used directly in computation of

WMC and indirectly in LCOM. Due to the various possible
alternatives in counting the methods, the results could vary,
leading to confusion. The various possibilities resulted from
count of inherited methods, methods with same names but
different signatures, and so on. They [26] further pointed
out that effectiveness of these 6 metrics could be enhanced
by providing guidelines concerning the application of these
metrics to specific language and by empirical validation. In
reply to these remarks, C& K [27] clarified that the methods
that require additional design effort and are defined in the
class should be counted and those that do not should not.
Hitz & Monatzeri [28] also criticized some of the metrics
of [22] and agreed with comments of [26]. Their main focus
was on CBO & LCOM metrics [28]. The details of their
work [28] have been discussed in coupling and cohesion
metrics separately below. Gursaran [29] tried to empirically
validate DIT and NOC metrics of C&K [22], and his results
indicated that these two metrics did not preserve the
numerical relation, which should be preserved from
measurement theory perspective. In another study [30], it
was shown that five out of the six C&K metrics (except
LCOM) [22] were useful in predicting the class fault-
proneness during the high and low level design phases of
the life cycle. The metrics were found to be statistically
independent and did not capture a great deal of information.
The authors [30] concluded that C&K metrics proved to be
better predictors than the metrics collected at the later phases
of the software life cycle. Li [31] evaluated C&K metrics
by using Kichenham’s metric evaluation framework and
found some deficiencies in these metrics. The framework
proposed by Kitchenham et al [32] for metric-evaluation
consisted of 5 models – unit definition, instrumentation,
attribute relationship, measurement protocol, and entity
population. In the unit definition model, a unit was defined
for all measures including ratio, scale, nominal and ordinal.
An instrumentation model determined the method to capture
a measure. When an attribute is composed of other attributes,
the attribute relationship model defines the relationship
among the attributes. A measurement protocol model was
concerned with how to measure an attribute consistently on
a specific entity & the entity population model sets the
normal value for an attribute [32]. Based on this framework,
Li [31] proposed a metrics suite consisting of 6 new metrics
– Number of Ancestor Classes (NAC), Number of Local
Methods (NLM), Class Method Complexity (CMC),
Number of Descendent Classes (NDC), Coupling Through
Abstract Data Type (CTA), and Coupling Through Message
Passing (CTM). These metrics were an extension/renaming
of metrics proposed earlier in [7], where the authors
evaluated their metrics on two commercial systems written
in Ada. The authors [7] collected the data for three years
and measured maintenance effort in terms of the number of
lines changed per class. Their statistical analyses of the data
led to the conclusion that their metrics could be useful in
predicting maintenance effort.

��������	������
��	���
������
�
����������
�
��	��� ��

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\6_JITENDER CHHABRA_RAVINDER BHATIA_VP SINGH

Sheriff et al. [33] analyzed two o-o software projects
developed at jet propulsion lab – micro generic controller,
and sequence generator. These two projects were analyzed
and compared using 3 C & K metrics – WMC, DIT, and
NOC. The empirical results collected for these metrics were
used to get insight into the complexity of two projects [33].
Wilkie et al [34] collected the data from 114 class samples
for C & K metrics and noted some observations:

(1) Simple count of member functions can be used as
definition of WMC & on average gives valid
results.

(2) Cyclomatic Complexity can be used to measure the
class complexity.

(3) WMC & DIT can be used to predict those classes
that are likely to contain faults.

(4) Higher values of LCOM point out those classes,
which could be good candidates for decomposition
into more classes.

(5) CBO had no effect on fault-proneness, but had an
impact on maintenance efforts.

(6) DIT & NOC combination gives a more thorough
assessment of inheritance.

Emam et al. [35] studied the effect of class size on various
C & K metrics [22] and a subset of metrics proposed in [12]
and concluded that there is confounding effect of class size
on validity of o-o software metrics, and thus class size effect
needs to investigated further. A set of metrics for o-o design
was presented in [36], which consisted of– Operation
Complexity (OpCom), Operation Argument Complexity
(OAC), Attribute Complexity (AC), Class Coupling (ClCpl),
Class Hierarchy (CH), Cohesion (Coh), and Reuse (Re).
These metrics were validated by using statistical regression
model based data collected from two small projects and the
data collected from the judgment of expert designers to the
complexity of the design [36].

Another popular metrics suite consisting of 6 metrics
was proposed in [37] and was given the name MOOD
(Metrics for Object-oriented Design). The proposed metrics
were Method Hiding Factor (MHF), Attribute Hiding factor
(AHF), Method Inheritance Factor (MIF), Attribute
Inheritance Factor (AIF), Polymorphism Factor (PF), and
Coupling Factor (CF). MHF & AHF were measures of
encapsulation, MIF & AIF concentrated on inheritance, and
PF & CF tried to measure polymorphism.

The 6 MOOD metrics were discussed from
measurement theory viewpoint and empirical data for these
metrics was collected from three different projects [38]. This
empirical data was analyzed keeping in view 4 aspects of
o-o programming – encapsulation, inheritance, coupling,
and polymorphism. The author [38] concluded that MOOD

metrics could be used to provide an overall assessment of
software, but he stressed upon the need of more empirical
studies, before generalization of the results.

Lorenz & Kidd [12] proposed a set of metrics grouped
into 4 categories – size, inheritance, internals, and externals.
Size oriented metrics for o-o class focused on counts of
attributes and operations of an individual class and average
values for o-o software as a whole. Inheritance based metrics
concentrated on the manner in which operations were reused
through class hierarchy. Metrics for class internals were
oriented towards cohesion, while external metrics were used
to examine coupling and reuse [12]. Neal [39] did a study
for validation of o-o software metrics and found that many
of the then proposed metrics couldn’t be considered valid
measures of the dimension they claim to measure. He
defined a model based on measurement theory for validation
of o-o metrics and proposed 10 new metrics – Potential
Methods Inherited (PMI), Proportion of Methods Inherited
by a Subclass (PMIS), Density of Methodological
Cohesiveness (DMC), Messages and Arguments (MAA),
Density of Abstract Classes (DAC), Proportion of
Overriding Methods in a Subclass (POM), Unnecessary
Coupling through Global Usage (UCGU), Degree of
Coupling Between Class Objects (DCBO), Number of
Private Instance Methods (PrIM), and Strings of Message
Links (SML).

Abreu et al [40] provided a new classification
framework named as TAPROOT. This framework was
defined along two independent vectors – category and
granularity. Six categories of o-o metrics were defined –
design metrics, size metrics, complexity metrics, reuse
metrics, productivity metrics, and quality metrics. They [40]
also proposed 3 granularity levels – software, class, and
methods. But no empirical/theoretical base for the metrics
was provided. Effectiveness of frameworks was studied in
[41] and the authors found that the frameworks were not
able to deliver the concept of flexibility and reusability. Then
they developed a conceptual model for frameworks and a
set of guidelines to build o-o frameworks. Aims of the
guidelines were to improve usability of frameworks,
flexibility, and reusability [41]. More recently in 2003, the
usefulness of o-o framework to a domain specific business
application has been studied from viewpoint of saving cost
and improving quality of the software [42]. Two case studies
were conducted, in each of which four kinds of applications
were developed. All applications were developed in two
ways – with and without o-o framework and results have
shown that the frameworks were more useful in achieving
a more efficient reusability [42]. The reusability has been
reported to be useful in improving the quality and
productivity. This fact has been emphasized with the help
of an automated tool to measure the reusability and its effect
on quality [43]. But at the same time, excessive usage of
frameworks for reusability has been reported to increase the

� �������	
���	
�����	��
	������	
�����
������
�
��
��
�����

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\6_JITENDER CHHABRA_RAVINDER BHATIA_VP SINGH

overall complexity [44], in which the authors have tried to
provide empirical evidence on the change in code
organization with the evolution of the software product.

O-O design metrics have been used to assign the high-
level design quality attributes of o-o software with the help
of hierarchical model. The model has related design
properties such as encapsulation, coupling, cohesion to
quality attributes such as reusability and flexibility. The
model has the capability of modification to include different
relationships and weights [45]. Subramanian & Corbin [46]
analyzed a Smalltalk software having 600 classes and
collected various metrics. The authors tried to identify some
metrics, which could be useful predictors of quality
attributes such as size, reusability and complexity in o-o
software.

6. COMPLEXITY METRICS

The applicability of traditional metrics of software
complexity like McCabe’s cyclomatic complexity,
Halstead’s science measures to o-o software was studied
by Tegarden et al [4] and it was found that the traditional
metrics were not directly applicable to o-o software. The
same authors pointed out in [47] that the complexity of o-o
software differs from structure software because of
polymorphism and inheritance. Tegarden and Sheetz
stressed that assessment of complexity of o-o software is
possible through combination of structural complexity
aspects and perceptual complexity concepts [17]. Sheetz et
al [48] proposed that complexity of o-o software could be
represented by a set of measures defined at the variable,
method, object, and application levels of the systems. At
the variable level, characteristics of data type, fan in, fan
out, and variable polymorphism were considered. The
method level complexity was defined to be based on number
of input/output variables, fan in, fan out, fan down, and
method polymorphism. Psychological complexity was
accounted for object level complexity measure, which was
divided into six groups- input/output variables, property
definitions, message passing, inheritance structure,
inheritance conflicts, and object polymorphism. The
measures proposed at the application level consisted of
number of abstract classes, number of concrete classes,
maximum depth of the object hierarchy, maximum breadth
of the object hierarchy, and the number of unique messages
sent between objects [48].

The different complexity measures suggested at four
different levels in [48] were extended by the same authors
in [41] and they presented a model of o-o software
complexity, which consisted of 44 different measures. This
model tried to integrate all of then existing o-o complexity
measures and some measures were identified, which
accommodated for cohesion and coupling aspects of the

system [41].

C & K proposed a simple measure of o-o software
complexity as WMC [19, 22]. In the WMC metric, a weight
for each method in a class was to be computed, which
represented the complexity of the method. However, no
specific metric was specified by C&K to measure this
weight, as pointed out in [49]. C&K complexity metric [22]
did not differentiate between complexity of reused classes
and that of newly developed ones, although former was
expected to have lower complexity and thus better quality
[50]. Thus Kamiya et al [50] proposed a revised complexity
metrics, which could be applied to the software, which had
been constructed by reusing software components and
validity & usefulness of the revised metrics have been
proved with the help of the estimation of efforts to fix faults.
Ebert and Morschel [51] also identified some o-o metrics
for measuring complexity of o-o software. The identified
metrics were integrated in SmallTalk Development support
system and were used for quality analysis of various
Smalltalk software [51]. Misic and Esic [52] tried to identify
some very simple and easily countable metrics, which could
estimate effort and complexity of o-o software. The metrics
considered were grouped into two categories – class model
measures and source code measures. These authors
suggested some formulas based on these two categories for
effort and complexity estimation. But the authors themselves
have stressed upon the need of more empirical data and
investigation of integrated effects of several metrics on
complexity and efforts [52].

Almost all of the above mentioned metrics concentrated
on the structural complexity of the object oriented software.
However very large and complex software (consisting of
lacs of lines of code and thousands of classes and objects)
being developed in the software industry during the 21st

century have given rise to another aspect of complexity
named as cognitive complexity, which can be useful in
improving the software engineering process [53]. Last
decade did not give much attention to this complexity, but
during this decade, spatial complexity has been reported to
be of prime importance specially from maintenance view
point [54, 55] Cognitive complexity metrics are always more
difficult to be trusted and validated due to less-understood
effect of human factors and human mind’s working on the
computation of such metrics [54, 56, 57]. In order to measure
human efforts needed in comprehending the software, the
concept of cognitive complexity was initiated by Douce et
al in [56], where they introduced the concept of spatial
complexity, which was based on theory of working memory
and was reported to affect the understandability of source
code [58]. Spatial ability is a term that is used to refer to an
individual’s cognitive abilities relating to orientation, the
location of objects in space, and the processing of location
related visual information. Spatial ability has been correlated
with the selection of problem solving strategy, and has

��������	������
��	���
������
�
����������
�
��	��� �!

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\6_JITENDER CHHABRA_RAVINDER BHATIA_VP SINGH

played an important role in the formulation of an influential
model of working memory. This concept of spatial abilities
was applied to object oriented environment by [59] and two
metrics class spatial complexity and object spatial
complexity were introduced. This method was based on
computing the distance among the definition and usage of
class members and objects. The metrics were validated over
a set of object oriented software and were found to be useful
indicators of understandability of object-oriented
software[59]. The spatial complexity measures for the Java
based development were also defined and validated in [60.]
Another way of computing cognitive complexity was
proposed by Wang & Shao as Code Functional Size (CFS)
in terms of cognitive weights [61] which were further
modified in [62]. This measure was based on the internal
structure of the source code and assigned different weights
to Basic Control Structures (BCS) depending on their
psychological complexity. This idea was further extended
by also incorporating the effect of operators and operands
[62]. Both of these proposed metrics were based on
architectural aspect of the genitive informatics. But these
measures were not exploiting the effects of encapsulation,
inheritance and polymorphism. Although these measures
were evaluated and validated using Weyuker’s properties
[63] and Briand et. al. renowned framework [64], but all of
these validations were not explicitly proved for object
oriented environment [65-68]. Another method of finding
the usefulness of cognitive metrics, [69] identified a set of
laws and properties specific to semantic and informatics of
software. He also developed a new type of deductive
semantics which can be very useful in future evaluation of
cognitive and semantic based measures. But all of the
researchers have stressed on cognitive complexity’s
importance and its strong impact on understandability and
comprehension.

CONCLUSION

In this paper, a survey of o-o metrics has been presented.
This paper has concentrated on the metrics suites available
in the literature along with the metrics proposed for the most
important attributeof quality i.e. complexity. In general, the
researchers have found that metrics suites are more useful
than a single metric to truly reflect the characteristics of
object-oriented software. Further, complexity of the o-o
software has been found to affects the quality and
maintainability of the software. The understandability of the
object-oriented software has been reported to be more
dependent on cognitive complexities instead of structural
complexity. Most of these stuies have been validated either
empirically or theoretically, but these validations and
evaluations are not yet well-established and need more
extensive evaluation based on their semantic behavior. There
is also a need for more empirical validations of many of the
proposed metrics. At the same time, new metrics, with a

strong theoretical and empirical background will be very
useful in controlling various aspects of quality of the object-
software during the designand maintenance phases of
software life cycle.

References

[1] J. Rochester, M. Jackson, “Software Measurement Methods:
Recipes for Success”, Information and Software Technology,
36, (3), (1994), 173–189.

[2] G. K. Gill, C. F. Kemerer, “Cyclomatic Complexity Density
and Software Maintenance Productivity”, IEEE Transactions
on Software Engineering, 17, (12), (1991), 1284–1288.

[3] D. R. Moreau, W. D. Dominick, “Object-Oriented Graphical
Information

Systems:

Research

Plans

and

Evaluation

Metrics”, Journal

of

Systems and Software, 10, (1989),

23–28.

[4] D. P. Tegarden, S. D. Sheetz, D. E. Monarchi, “The
Effectiveness of Traditional Metrics for Object-Oriented
Systems”, Proceedings of Twenty-Fifth Hawaii International
Conference on System Sciences, IEEE Computer Society
Press, IV, (Jan 1992), 359–368.

[5] S. L. Pfleeger, J. D. Palmer, “Software Estimation for
Object-Oriented Systems”, Proceedings of 1990
International Function Point User Group Fall Conference,
San Antonio, TX, (1990), 181–196.

[6] S. C. Bilow “Applying Graph-Theoretic Analysis Models
to Object-Oriented System Models”, OOPLSA’92
Workshop on Metrics for Object-Oriented Software
Engineering, Position Paper, (1992).

[7] W. Li, S. Henry, “Object Oriented Metrics that Predict
Maintainability”, Journal of Systems and Software, 23,
(1993), 111–122.

[8] W. Li, S. Henry, D. Kafura, R. Schulman, “Measuring
Object-Oriented Design”, Journal of Object Oriented
Design, (July-August 1995), 48–55.

[9] B. Henderson-Sellers, “Object-Oriented Metrics –Measures
of Complexity”, Prentice Hall PTR, Upper Saddle River,
New Jersey, (1996).

[10] T. J. McCabe, A Complexity Measure, IEEE Transactions
on Software Engineering, SE-2, (4), (Dec 1976), 308–319.

[11] M. H. Halstead, “Elements of Software Science”, North
Holland, New York, (1977).

[12] M. Lorenz, J. Kidd, “Object Oriented Software Metrics”,
Prentice Hall, NJ, (1994).

[13] J. R. Abounader, D. A. Lamb, “A Data Model for Object-
Oriented Design Metrics”, External Technical Report, (Oct
1997).

[14] V. R. Basili, H. D. Rombach, “The TAME Project: Towards
Improvement Oriented Software Environments”, IEEE
Transactions on Software Engineering, 14, (1988), 758–773.

[15] K. L. Morris, Metrics for Object-Oriented Software
Development Environments”, unpublished Masters Thesis,
M.I.T. Cambridge, MA, (1988).

[16] A. Lake, C. Cook, “A Software Complexity Metrics for C++”,
Technical Report 92-60-03, Oregon State Univ., (1992).

"# �������	
���	
�����	��
	������	
�����
������
�
��
��
�����

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\6_JITENDER CHHABRA_RAVINDER BHATIA_VP SINGH

[17] D. P. Tegarden, S. D. Sheetz, “Object-Oriented System
Complexity: An Integrated Model of Structure and
Perceptions”, OOPLSA’92 Workshop on Metrics for Object-
Oriented Software Development, Washington DC, (1992).

[18] S. A. Whitmire, “Measuring Complexity in Object-Oriented
Software”, Third International Conference on Application
Software Measures, La Jolla, CA, (1992).

[19] S. R. Chidamber, C. F. Kemerer, “Towards a Metrics Suite
for Object-Oriented design”. Proc. OOPSLA’91, SIGPLAN
Notices, 26, (11), (1991), 197–211.

[20] C. Rajaraman, M.R. Liu, “Some Coupling measures for C++
Programs”, Proceedings of TOOLS USA’92, Prentice Hall,
Englewood Cliffs, NJ, (1992), 225–234.

[21] C. Rajaraman, M. R. Liu, “Reliability and Maintainability
Related Software Coupling Metrics in C++ Programs”,
IEEE, (1992), 303–311.

[22] S. R. Chidamber, C. F. Kemerer, “A Metrics Suite for Object
Oriented Design”, IEEE Transactions on Software
Engineering, 20, (6), (1994), 476–493.

[23] E. Weyuker, “Evaluating Software Complexity Measures”,
IEEE Transactions on Software Engineering, 14, (9), (1988),
1357–1365.

[24] Gursaran, G. Roy, “On the Applicability of Weyuker
Property 9 to Object-Oriented Structural Inheritance
Complexity Metrics”, IEEE Transactions on Software
Engineering, 27, (4), (April 2001), 381–384.

[25] L. Zhang, D. Xle, “Comments on ‘On The Applicability of
Weyuker Property 9 to Object-Oriented Structural
Inheritance Complexity Metrics’”, IEEE Transactions on
Software Engineering, 28, (5), (2002), 526–527.

[26] N. L. Churcher, M. J. Shepperd, Comments on “A Metrics
Suite for Object Oriented Design”, IEEE Transactions on
Software Engineering, 21, (3), (1995), 263–264.

[27] S. R. Chidamber, C. F. Kemerer, Authors Reply to:
“Comments on: A Metrics Suite for Object Oriented
Design”, IEEE Transactions on Software Engineering, 21,
(3), (1995), 265–265.

[28] M. Hitz, B. Montazeri, “Chidamber and Kemerer’s Metrics
Suite: A Measurement Theory Perspective”, IEEE
Transaction on Software Engineering, 22, (4), (1996),
267–271.

[29] Gursaran, G. Roy, “Viewpoint Representation Validation:
A Case Study on Two Metrics from the Chidamber and
Kemerer Suite”, Journal of Systems and Software, 59, (1),
(2001), 83–97.

[30] V. R. Basili, L. C. Briand, W. L. Melo, “A Validation of
Object-Oriented Design Metrics As Quality Indicators”,
IEEE Transactions on Software Engineering, 22, (10),
(1996), 751–761.

[31] W. Li, “Another Metric Suite for Object-Oriented
Programming”, Journal of Systems and Software, 44,
(1998), 155–162.

[32] B. Kitchenham, S. S. Pfleeger, N. E. Fenton, “Towards a
Framework for Software Measurement Validation”, IEEE
Transactions on Software Engineering, 21, (12), (1995),
929–944.

[33] J. S. Sherif, P. Sanderson, “Metrics for Object-oriented
Software Projects”, Journal of Systems and Software, 44,
(1998), 147–154.

[34] F. G. Wilkie, B. Hylands, “Measuring Complexity in C++
Application Software”, Software- Practice and Experience,
28, (5), (1998), 513–546.

[35] E. K. Emam, S. Benlarbi, N. Goel, S. N. Rai, “The
Confounding Effect of Class Size on the Validity of Object-
Oriented Metrics”, IEEE Transactions on Software
Engineering, 27, (7), (2001), 630–650.

[36] J. Y. Chen, J. F. Lu, “A New Metric for Object Oriented
Design”, Information and Software Technology, 35, (4),
(1993), 232–240.

[37] F. B. E. Abreu, “The MOOD Metrics Set”, Proceedings of
ECOOPS’95 Workshop on Metrics, (1995).

[38] R. Harrison, S. J. Counsell, R. V. Nithi, “An Evaluation of
the MOOD Set of Object-Oriented Metrics”, IEEE
Transactions on Software Engineering, 24, (6), (June 1998),
491–496.

[39] R. D. Neal, “The Measurement Theory Validation of
Proposed Object-Oriented Software Metrics”, Dissertation,
Virginia Commonwealth University, (1996).

[40] F. B. E. Abreu, R. Carapuca, “Candidate Metrics for Object-
Oriented Software Within a Taxonomy Framework”,
Journal of Systems and Software, 26, (1994), 87–96.

[41] J. V. Gurp, J. Bosch, “Design, Implementation and
Evolution of Object-Oriented Frameworks: Concepts and
Guidelines”, Software- Practice and Experience, 31, (3),
(2001), 277–300.

[42] H. Fujiwara, S. Kusumoto, K. Inoue, A. Suzuki, T. Ootsubo,
K. Yuura, “Case Studies To Evaluate a Domain Specific
Application Framework Based on Complexity and
Functionality Metrics”, Information and Software
Technology, 45, (1), (Jan 2003), 43–49.

[43] L. H. Etzkorn, W. E. Hughes, C. G. Davis, “Automated
Reusability Quality Analysis of OO Legacy Software”,
Information and Software Technology, 43, (5), (2001),
295–308.

[44] G. Manduchi, C. Taliercio, “Measuring Software Evolution
at a Nuclear Fusion Experiment Site: A Test Case for
Applicability of OO and Reuse Metrics in Software
Characterization”, 44, (10), (2002), 593–600.

[45] J. Bansiya, C. G. Davis, “A Hierarchical Model for Object-
Oriented Design Quality Assessment”, IEEE Transactions
on Software Engineering, 28, (1), (2002), 4–17.

[46] G. Subramanian, W. Corbin, “An Empirical Study of Certain
Object-Oriented Software Metrics”, Journal of Systems and
Software, 59, (1), (2001), 57–63.

[47] D. P. Tegarden, S. D. Sheetz, D. E. Monarchi, “A Software
Complexity Model of object-Oriented Systems”, Decision
Support Systems: The International Journal, 13, (1995),
241–262.

[48] S. D. Sheetz, D. P. Tegarden, D. E. Monarchi, “Measuring
Object-Oriented System Complexity”, Proceedings of First
Workshop on Information Technologies and Systems
WITS’91, (Dec 1991), 285–307.

��������	������
��	���
������
�
����������
�
��	��� "$

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\6_JITENDER CHHABRA_RAVINDER BHATIA_VP SINGH

[49] R. Kalakota, S. Rathnam, A.B. Whinston, “The Role of
Complexity in Object-Oriented System Development,
Proceedings of the Twenty-Sixth Hawaii International
Conference on System Sciences”, IEEE Computer Society
Press, (Jan 1993), 759–768.

[50] T. Kamiya, S. Kusumoto, K. Inoue, Y. Mohri, “Empirical
Evaluation of Reuse Sensitiveness of Complexity Metrics”,
Information and Software Technology, 41, (5), (1999),
297–305.

[51] C. Ebert, I. Morschel, “ Metrics for Quality Analysis and
Improvement of Object-Oriented Software”, Information
and Software Technology, 39, (7), (1997), 497–509.

[52] V.B. Misic, D.N. Tesic, “Estimation of Effort and
Complexity: An Object-Oriented Case Study”, Journal of
Systems and Software, 41, (2), (1998), 133–143.

[53] N. M. Carod, A. M. Gabriela, N. Aranda, A. Cechich, “A
Cognitive Approach to Improve Software Engineering
Processes”, 7th Workshop on Researchers in Computer
Science WICC (2005).

[54] Jitender Kumar Chhabra, K. K. Aggarwal, Yogesh Singh,
Code & Data Spatial Complexity: Two Important Software
Understandability Measures, Information and Software
Technology, 45, (8), (2003), 539–546.

[55] A. Mohan, N. Gold, P. Layzell, “An Initial Approach to
Assessing Program Comprehensibility using Spatial
Complexity, Number of Concepts and Typographical Style”,
IEEE Working Conference on Reverse Engineering
WCRE’04, (2004).

[56] C. R. Douce, P. J. Layzell, J. Buckley, Spatial Measures of
Software Complexity, Technical Report, Information
Technology Research Institute, University of Brighton, UK,
(Jan 1999).

[57] Y. Wang, J. Shao, A New Measure of Software Complexity
based on Cognitive Weights, Canadian Journal of Electrical
& Computer Engineering, 28, (2), (2003), 69–74.

[58] A. Baddeley, Human Memory: Theory and Practice, Revised
Edition, Hove Psychology Press, (1997).

[59] Jitender Kumar Chhabra, K. K. Aggarwal, and Yogesh.
Singh, “Measurement of Object-Oriented Spatial
Complexity,” Information and Software Technology, 46,
(10), (2004), 689-699.

[60] J. K. Chhabra, Varun Gupta, “Towards Spatial Complexity
Measures for Comprehension of Java Programs” IEEE
International Conference on Advanced Communications
and Computing ADCOM 2006, (Dec 2006), 430–433.

[61] S. Misra, “A Complexity Measure Based on Cognitive
Weights”, International Journal of Theoretical and Applied
Computer Science, 1, (1), (2006), 1–10.

[62] S. Mishra, “Modified Cognitive Complexity Measure”,
Proceedings of 21st ISCIS’06 Lecture Notes in Computer
Science, 4263, 1050–59.

[63] E. Weyuker, “Evaluating Software Complexity Measures”,
IEEE Transactions on Software Engineering, 14, (1988),
1357–1365.

[64] L. C. Briand, S. Morasca , V. R. Basili, “Property-Based
Software Engineering Measurement”, IEEE Transactions
on Software Engineering, 22 (1), (Jan 1996), 68–86.

[65] S. Misra, A. K. Misra, “Evaluating Cognitive Complexity
Measure with Weyuker Properties” Proceedings of Third
IEEE International Conference on Cognitive Informatics
(ICCI2004), 103–108.

[66] S. Misra, A. K. Misra, “Evaluation and Comparison of
Cognitive Complexity Measure”, ACM SIGSOFT Software
Engineering Notes. 32, (2), (Mar 2007), 1–5.

[67] S. Misra, ‘Validating Modified Cognitive Complexity
Measure’ ACM SIGSOFT Software Engineering Notes. 32,
(3), (2007), 1–5.

[68] D. S. Kushwaha., A. K. Misra, “Robustness Analysis of
Cognitive Information Complexity Measure using
Weyuker’s Properties”. ACM SIGSOFT Software
Engineering Notes, 31, (1), (2006), 1–6.

[69] Y. Wang, “On the Informatics Laws and Deductive
Semantics of Software”, IEEE Transactions on Systems,
Man and Cybernetics, 36, (2), (2006), 161–171.

