International Journal of Information Technology and Knowledge Management

July-December 2010, Volume 3, No. 2, pp. 699-705

EXTREME PROGRAMMING: NEWLY ACCLAIMED AGILE SYSTEM
DEVELOPMENT PROCESS

Er. Rohini Mahajan! & Er. Pawanpreet Kaur?

Extreme Programming is one of the most discussed subjects in the software development community. It is one of the several
popular agile approaches to software development that stresses customer satisfaction and teamwork. Extreme Programming
(or XP) XP delivers clean designs and high quality software on a realistic schedule. Extreme Programming (or XP) is a set
of values, principles and practices for rapidly developing high-quality software that provides the highest value for the customer
in the fastest way possible. But what makes XP extreme? And how does it fit into the new world of agile methodologies?
This paper will first give introduction to Extreme Programming. Then it will give the main problems before extreme
programming that were in Agile Software Development. The paper also explains how XP uses a set of practices to build an
effective software development team that produces quality software in a predictable and repeatable manner. The Extreme
Programming movement has been a subset of the object-oriented (OO) programming community for several years, but has
recently attracted more attention. This paper is written with the intent to help software developers understand the key concepts
of this methodology and to provide a framework for implementing these processes into a business.

1. INTRODUCTION

Extreme Programming is a relatively new, somewhat
controversial development process that takes many known
software development practices. Extreme Programming, or
XP, is a lightweight discipline of software development
based on principles of simplicity, communication, feedback,
and courage. XP was developed to address the needs of
small teams who are confronted with vague and changing
requirements. XP is a discipline of software development
that follows a specific structure that is designed to simplify
and expedite the process of developing new software. XP
takes many of its fundamentals from other iterative
development methodologies, including RAD and JAD.
However, unlike those methodologies, which are more of a
rapid prototyping approach, XP creates individual
components that can be quickly developed and integrated
into a larger software system. “Extreme” means these
practices get “turned up” to a much higher “volume” than
on traditional projects.The result is stable, productive, and
very rapid because the practices support each other the more
they are used together without interference. An Extreme
project is typically so stable and sedate it can lead to
FortyHourWeeks without any schedule slips.

Extreme Programming codifies a set of practices that
many software developers are willing to adopt in both action
and spirit. Many of these practices are grounded in
fundamental project management theory. When software
development teams embrace the practices of Extreme
Programming an opportunity is created for a broad set of
project management practices to become meaningful and

Lecturers, SUSCET, Tangori (Mohali)
er.rohinimahajan@gmail.com?, er.pawanpreet@gmail.com?

5 SaLID

accessible to the developers, while at the same time making
clear,. However, it is important to acknowledge that Extreme
Programming is not a comprehensive project management
system, but rather is a set of software development best
practices that overlap nicely with best practices from the
project management domain.

2. PROBLEMS WITH AGILE SOFTWARE DEVELOPMENT

Agile Software Development is a conceptual framework for
software engineering that promotes development iterations
through out the life-cycle of the project. Mostly techniques
under agile software development minimize risk by
developing software in short amounts of time. Each iteration
lasts one week to four weeks. Each iteration is an entire
project consists of Planning/Requirements Analysis, Design,
Coding, Testing, and Documentation. Various principles of
Agile Software Development are:

a) Customer satisfaction by rapid, continuous delivery
of useful software.

b) Working software is delivered frequently.

c) Working software is the principle measure of
progress.

d) Even late changes in requirements are welcomed.

e) Close, daily cooperation between business people
and developers.

f) Face-to-face conversation is the best form of
communication.

g) Projects are built around motivated individuals, who
should be trusted.

P D F To remove this message, purchase the
product at www.SolidDocuments.com

mailto:rohinimahajan@gmail.com1
mailto:pawanpreet@gmail.com2accessible

700
h) Continuous attention to technical excellence and
good design.
i) Simplicity.
j) Self-organizing teams.
k) Regular adaptation to changing circumstances.

Various problems with Agile Software Development
and their general solutions are given below:

Problem: Schedule Slips
Solution: Short release cycles (a few months at most).
Problem: Project Canceled

Solution: Asks the customer to choose the smallest
release that makes the most business sense.

Problem: System goes sour

Solution: Creates and maintains a comprehensive suite
of tests which are run and re-run after every change (several
times a day) to ensure a quality baseline.

Problem: Defect Rate

Solution: Programmer-written tests(function-by-
function) and customer-written tests(feature-by-feature).

Problem: Business Misunderstood

Solution: Call the customer to be an integral part of
the team

Problem: Business Changes
Solution: Shorten the release cycle.
Problem: False feature rich

Solution: Insists that only the highest priority tasks are
addressed

Problem: Staff Turnover

Solution: Asks to respect programmers to accept
responsibility for development.

To solve all these problems in extreme manner, there
was Extreme Programming.

3. WHY EXTREME PROGRAMMING?

Traditional process called the Waterfall Methodology used
the following steps:

» Decide what to build (requirements and analysis).
» Decide how to build it (design).
e Build it (coding).

5 SaLID

Er. RoHINI MaHAIAN & ER. PAWANPREET KAUR

e Test it (testing).

Consequences of using traditional S/W development
methodology are discussed below:

* No user feedback until very late in the project.
e Requirements changes expensive.
e Progress unmeasurable until late in the project.

e Usually late, so have to make up time somewhere
towards the end.

e Testing always seems to get the short stick.
* No deliverable value until end of project.
¢ Ugly Cost of Change Curve.

The strong need for extreme programming can be
described by the use of following points:

a) Extreme Programming (XP) was created in
response to problem domains whose requirements
change. Customers may not have a firm idea of
what the system should do. One may have a system
whose functionality is expected to change every
few months.. This is when XP will succeed while
other methodologies don’t. Extreme Programming
empowers your developers to confidently respond
to changing customer requirements, even late in
the life cycle.

b) Extreme Programming improves a software project
in five essential ways; communication, simplicity,
feedback, respect, and courage. Extreme
Programmers constantly communicate with their
customers and fellow programmers. They keep
their design simple and clean. They get feedback
by testing their software starting on day one. They
deliver the system to the customers as early as
possible and implement changes as suggested.
Every small success deepens their respect for the
unique contributions of each and every team
member. With this foundation Extreme
Programmers are able to courageously respond to
changing requirements and technology.

c) XP was also set up to address the problems of
project risk. If the customers need a new system
by a specific date, the risk is high. If that system is
a new challenge for your software group the risk
is even greater. If that system is a new challenge to
the entire software industry the risk is greater even
still. The XP practices are set up to mitigate the
risk and increase the likelihood of success.

d) XP is set up for small groups of programmers.
Between 2 and 12, though larger projects of 30 have

P D F To remove this message, purchase the
product at www.SolidDocuments.com

ExTREME PROGRAMMING: NEwWLY AccLAIMED AGILE SYSTEM DEVELOPMENT PROCESS

reported success. Programmers can be ordinary;
you don’t need programmers with a Ph.D. to use
XP. But you can not use XP on a project with a
huge staff. We should note that on projects with
dynamic requirements or high risk one may find
that a small team of XP programmers will be more
effective than a large team anyway.

e) Extreme Programming is successful because it
stresses customer satisfaction. Instead of delivering
everything you could possibly want on some date
far in the future this process delivers the software
you need as you need it.

f) Extreme Programming emphasizes teamwork.
Managers, customers, and developers are all equal
partners in a collaborative team. Extreme
Programming implements a simple, yet effective
environment enabling teams to become highly
productive. The team self-organizes around the
problem to solve it as efficiently as possible.

Extreme Programming is one of several popular Agile
Processes. It has already been proven to be very successful
at many companies of all different sizes and industries world
wide.

4. RuLesor XP

The most surprising aspect of Extreme Programming is its
simple rules. Extreme Programming is a lot like a jig saw
puzzle. There are many small pieces. Individually the pieces
make no sense, but when combined together a complete
picture can be seen. The rules may seem awkward and
perhaps even naive at first, but are based on sound values
and principles.

The rules set expectations between team members but
are not the end goal themselves. We will come to realize
these rules define an environment that promotes team
collaboration and empowerment that is your goal. Once
achieved productive teamwork will continue even as rules
are changed to fit your company’s specific needs. The flow
chart in fig 1 shows how Extreme Programming’s rules work
together. Customers enjoy being partners in the software
process, developers actively contribute regardless of
experience level, and managers concentrate on
communication and relationships. Unproductive activities
have been trimmed to reduce costs and frustration of
everyone involved. XP works by bringing the whole team
together in the presence of simple practices, with enough
feedback to enable the team to see where they are and to
tune the practices to their unique situation. In Extreme
Programming, every contributor to the project is an integral
part of the “Whole Team”. The team forms around a business
representative called “the Customer”, who sits with the team
and works with them daily.

5 SaLID

701

4.1. Some Common XP Terms

a) Business the part of an organization that wants a
program written, usually because they can make
or save money by using it themselves, or make
money by selling it.

b) Customer a person or group of people who
represent the interests of business to the
development team. The ideal customer is either a
user of the system, or a proxy for the users, such
as a product manager.

c) Development the part of an organization that writes
programs, usually to meet the needs/requirements
of business.

d) Iteration a period of fixed duration (typically 1, 2
or 3 weeks) during which a set of features is added
to the system.

e) User Story a description, written by the customer,
of a single desired additional feature of the system
being developed. Typically written on a 4x6 card.
User stories serve the same purpose as use cases
but are not the same. They are used to create time
estimates for the release planning meeting. They
are also used instead of a large requirements
document. User Stories are written by the
customers as things that the system needs to do
for them. They are similar to usage scenarios,
except that they are not limited to describing a user
interface. They are in the format of about three
sentences of text written by the customer in the
customers terminology without techno-syntax.

Unfinished
Features

Most Important
Features

Iterétiye
Planning
A Project
/" Heartbeat
Worki
Softwa"r.g

\Em%mn{ent

Daily Communication

Honest
Plans

Fig. 1. Rules of Extreme Programming

P D F To remove this message, purchase the
product at www.SolidDocuments.com

702

4.2. Requirementsfor Extreme Programming

a) An Extended Development Team: The XP team
includes not only the developers, but the managers
and customers as well, all working together elbow
to elbow. Asking questions, negotiating scope and
schedules, and creating functional tests require
more than just the developers be involved in
producing the software.

b) Testability: One must be able to create automated
unit and functional tests. While some domains will
be disqualified by this requirement, many are not.
One need to apply a little testing ingenuity in some
domains. System design must be easier to test.

¢) Productivity: XP projects unanimously report
greater programmer productivity when compared
to other projects within the same corporate
environment. But this was never a goal of the XP
methodology. The real goal has always been to
deliver the software that is needed when it is
needed. If this is what is important to one’s project
it may be time to try XP.

v
P] Extreme Programming Project
r—-_
Tes Seenaios
. New User Story
User Stones Requiements PIOLVEIOHY /@R
Lates Cush
Auhitgmxlﬂml Re]ca;: Rﬂfﬁb "~ verson, Aceeptance ALplp{mn':[r Small
Spike HanmngQ Tests Releases
Uncertain Confident
Ectmates Estimates
S]Jlkt Copyrght 200 . D Wl

Fig. 2: Typical Stagesin XP Project

5. Basic VALUES oF EXTREME PROGRAMMING

XP uses a consistent set of values that serves both human
and commercial needs.

1) Communication: Building software systems
requires communicating system requirements to the
developers of the system. In formal software
development methodologies, this task is
accomplished through documentation. Extreme
Programming techniques can be viewed as methods
for rapidly building and disseminating institutional
knowledge among members of a development
team. The goal is to give all developers a shared
view of the system which matches the view held
by the users of the system. To this end, Extreme

Er. RoHINI MaHAIAN & ER. PAWANPREET KAUR

Programming favors simple designs, common
metaphors, collaboration of users and
programmers, frequent verbal communication, and
feedback.

2) Simplicity: Extreme Programming encourages
starting with the simplest solution. Extra
functionality can then be added later. The
difference between this approach and more
conventional system development methods is the
focus on designing and coding for the needs of
today instead of those of tomorrow, next week, or
next month. Proponents of XP acknowledge the
disadvantage that this can sometimes entail more
effort tomorrow to change the system; their claim
is that this is more than compensated for by the
advantage of not investing in possible future
requirements that might change before they
become relevant. Coding and designing for
uncertain future requirements implies the risk of
spending resources on something that might not
be needed. Related to the “communication” value,
simplicity in design and coding should improve the
quality of communication. A simple design with
very simple code could be easily understood by
most programmers in the team.

3) Feedback: Within Extreme Programming, feedback
relates to different dimensions of the system
development:

Extreme Programming
Planning/Feedback Loops

\ months
‘ weeks

Acceptance Test

Release Plan

days
Stand Up Meeting
one day
Pair Negotiation
hours
UnitTest
.‘ .
; minutes

Pair Programming
| Code e

© J).Donovan Wells

Fig. 3: XP Feedback L oops

* Feedback from the System: By writing unit tests,
or running periodic integration tests, the
programmers have direct feedback from the state
of the system after implementing changes.

SOLID CONVERTER PDF > oo pras e

ExTREME PROGRAMMING: NEwWLY AccLAIMED AGILE SYSTEM DEVELOPMENT PROCESS

* Feedback from the Customer: The functional tests
(aka acceptance tests) are written by the customer
and the testers. They will get concrete feedback
about the current state of their system. This review
is planned once in every two or three weeks so the
customer can easily steer the development.

» Feedback from the Team: When customers come
up with new requirements in the planning game
the team directly gives an estimation of the time
that it will take to implement.

e Feedback is closely related to communication and
simplicity. Flaws in the system are easily
communicated by writing a unit test that proves a
certain piece of code will break. The direct
feedback from the system tells programmers to
recode this part. A customer is able to test the
system periodically according to the functional
requirements, known as user stories.

5. CourAGE

Several practices embody courage. One is the commandment
to always design and code for today and not for tomorrow.
This is an effort to avoid getting bogged down in design
and requiring a lot of effort to implement anything else.
Courage enables developers to feel comfortable with
refactoring their code when necessary. [This means
reviewing the existing system and modifying it so that future
changes can be implemented more easily. Another example
of courage is knowing when to throw code away: courage
to remove source code that is obsolete, no matter how much
effort was used to create that source code. Also, courage
means persistence: A programmer might be stuck on a
complex problem for an entire day, then solve the problem
quickly the next day, if only they are persistent.

6. REsPECT

The respect value manifests in several ways. In Extreme
Programming, team members respect each other because
programmers should never commit changes that break
compilation, that make existing unit-tests fail, or that
otherwise delay the work of their peers. Members respect
their work by always striving for high quality and seeking
for the best design for the solution at hand through
refactoring.

Adopting four earlier values led to respect gained from
others in the team. Nobody on the team should feel
unappreciated or ignored. This ensures high level of
motivation and encourages loyalty toward the team, and the
goal of the project. This value is very dependent upon the
other values, and is very much oriented toward people in a
team.

5 SaLID

703

7. XP PracTICES

XP is extreme in the sense that it takes 12 well-known
software development “best practices” to their logical
extremes. Extreme Programming (XP) is a new and
acclaimed approach to software development process. The
goal of XP it to allow software developers to embrace change
and successfully address the problem of vague and changing
requirements. XP is one of several agile processes, which
distinguish themselves from more traditional approaches by
their innovative lightweight techniques. XP involves using
a number of explicit practices, some of which address
technical issues, such as code refactoring and test
development, and some of which address human issues, such
the on-site customer, and the planning game.

1. Planning Process

The XP planning process allows the XP “customer” to define
the business value of desired features, and uses cost estimates
provided by the programmers, to choose what needs to be
done and what needs to be deferred. The effect less hard-
copy documentation - often one of the most of XP’s planning
process is that it is easy to steer the expensive parts of a
software project. The planning process is divided into two
parts:

¢ Release Planning: This is focused on determining
what requirements are included in which near-term
releases, and when they should be delivered. The
customers and developers are both part of this.
Release Planning consists of three phases:

— Exploration Phase: In this phase the customer
will provide a short list of high-value
requirements for the system. These will be
written down on user story cards.

— Commitment Phase: Within the commitment
phase business and developers will commit
themselves to the functionality that will be
included and the date of the next release.

— Seering Phase: In the steering phase the plan
can be adjusted, new requirements can be added
and/or existing requirements can be changed or
removed.

e [teration Planning: This plans the activities and
tasks of the developers. In this process the customer
is not involved. Iteration Planning also consists of
three phases:

— Exploration Phase: Within this phase the
requirement will be translated to different tasks.
The tasks are recorded on task cards.

— Commitment Phase: The tasks will be assigned
to the programmers and the time it takes to
complete will be estimated.

P D F To remove this message, purchase the
product at www.SolidDocuments.com

704

— Steering Phase: The tasks are performed and the
end result is matched with the original user story.

2. Small Releases

XP teams put a simple system into production early, and
update it frequently on a very short cycle. The delivery of
the software is done in predetermined releases (sometimes
called “Builds’). The release plan is determined when
initiating the project. Usually each release will carry a small
segment of the total software, which can run without
depending on components that will be built in the future.
The small releases help the customer to gain confidence in
the progress of the project.

XP Practices

Colocie T Coding

Ownership Tost-Driven Standard
/ Dew 'I\
Customer Pair) Planning
Teshs Programming Falactoriey (xame
Continuous \ %imple Sustainable
Integration Design Pac

v P ranming cow
Fig. 4: Extreme Programming Practices

3. Metaphors

XP teams use a common “system of names” and a common
system description that guides development and
communication. At one level, metaphor and architecture are
synonyms they are both intended to provide a broad view
of the projects goal. But architectures often get bogged down
in symbols and connections. XP uses metaphor in an attempt
to define an overall coherent theme to which both developers
and business clients can relate.

4. Simple Design

A program built with XP should be the simplest program
that meets the current requirements. There is not much
building “for the future”. Instead, the focus is on providing
business value. Of course it is necessary to ensure that you
have a good design, and in XP this is brought about through
“refactoring”. Simple design has two parts: 1) design for
the functionality that has been defined, not for potential
future functionality. 2) create the best design that can deliver
that functionality.

5 SaLID

Er. RoHINI MaHAIAN & ER. PAWANPREET KAUR

5. Continuous Testing

Before programmers add a feature, they write a test for it.
When the suite runs, the job is done. Tests in XP come in
two basic flavors.

a. Unit Tests are automated tests written by the
developers to test functionality as they write it.
Each unit test typically tests only a single class, or
a small cluster of classes. Unit tests are typically
written using a unit testing framework, such as
JUnit.

b. Acceptance Tests (also known as Functional Tests)
are specified by the customer to test that the overall
system is functioning as specified. Acceptance tests
typically test the entire system, or some large chunk
of it. When all the acceptance tests pass for a given
user story, that story is considered complete. At the
very least, an acceptance test could consist of a
script of user interface actions and expected results
that a human can run. ldeally acceptance tests
should be automated, either using the unit testing
framework, or a separate acceptance testing
framework.

6. Refactoring

One thing that sets XP apart from other approaches, it would
be refactoring the ongoing redesign of software to improve
its responsiveness to change. The refactoring process focuses
on removal of duplication (a sure sign of poor design), and
on increasing the “cohesion” of the code, while lowering
the “coupling”. High cohesion and low coupling have been
recognized as the hallmarks of well-designed code for at
least thirty years.

7. Pair Programming

XP programmers write all production code in pairs, two
programmers working together at one machine. Pair
programming has been shown by many experiments to
produce better software at similar or lower cost than
programmers working alone.

8. Collective Owner ship

On an Extreme Programming project, any pair of
programmers can improve any code at any time. This means
that all code gets the benefit of many people’s attention,
which increases code quality and reduces defects.

9. ContinuousIntegration

XP teams integrate and build the software system multiple
times per day. This keeps all the programmers on the same
page, and enables very rapid progress. Perhaps surprisingly,
integrating more frequently tends to eliminate integration

P D F To remove this message, purchase the
product at www.SolidDocuments.com

ExTREME PROGRAMMING: NEWLY AccLAIMED AGILE SySTEM DEVELOPMENT PROCESS 705

problems that plague teams who integrate less often. XP is a good choice when requirements are unclear, or

Extreme Programming teams keep the system fully prone to change (because of changing business situations,

integrated at all times. or as a result of external conditions). XP is distinguished
from others by:

10. 40-hour Week

Tired programmers make more mistakes. XP teams do not
work excessive overtime, keeping them fresh, healthy, and
effective. Extreme Programming teams are in it for the long
term. They work hard, and at a pace that can be sustained
indefinitely. This means that they work overtime when it is
effective. XP teams are in it to win, not to die.

11. On-site Customer

An XP project is steered by a dedicated individual who is
empowered to determine requirements, set priorities, and
answer questions as the programmers have them. The effect
of being there is that communication improves, with less
hard-copy documentation - often one of the most expensive
parts of a software project.

12. Coding Standard

For a team to work effectively in pairs, and to share
ownership of all the code, all the programmers need to write
the code in the same way, with rules that make sure the code
communicates clearly. XP teams follow a common coding

Early, concrete, and continuing feedback from
short life cycles.

Incremental planning approach.

Ability to flexibly schedule the implementation of
functionality, responding to changing business
needs.

Reliance on automated tests written by
programmers and customers.

Reliance on oral communication, tests, and source
code to communicate system structure and intent.

Reliance on evolutionary design process that lasts
as long as the system lasts.

Reliance on the close collaboration of programmers
with ordinary skills.

Reliance on practices that work with both the short
term instincts of programmers and long term
interests of the project.

REFERENCES

) o [1] Doo Hwan Bae, “Extreme Programming”.
stapdard, S0 that all the code in the system.loo.k.s as if it was [2] LisaCrispin, Tip House, Carol Wade, “The Need for Speed:
written by a single — very competent — individual. Automating Acceptance Testing in an eXtreme
Programming Enviornment”
8. CoNcLUSION [3] Michael McCormick, “Programming Extremism?”,
Extreme Programming works by bringing the whole team cht))lmmumcatlons of ACM, 44, No. 6, June 2001, pp 199-
ICOQSLherkm the [E)rleset?ce of simple pricncesﬁ with eno(l;gh [4] Cesar F. Acebal, Juan M. Cueva Lovelle, “A New Method
eedback to e.na e the Feam.to se(? w .ere they are and to of Software Development: Extreme Programming.”
tune the practices to their unique situation. XP doesn’t ask . .
. . . [5] K.Beck, Extreme Programming Explained. Embrace
developers to abandon good softvyare engineering practices. Change, Addison —Wesley,2000.
It_dges, however, ask_s to consider closely the absolute [6] http://thoughtworks.com
minimum set of practices that enable a small, co-located . . .
. . . s . [7] Jeffries, R. http://www.xprogramming.com
team to function effectively in today’s software delivery
[8] http://groups.yahoo.com/group/xpstl

development.

5 SaLID

P D F To remove this message, purchase the
product at www.SolidDocuments.com

http://thoughtworks.com
http://www.xprogramming.com

