
International Journal of Information Technology and Knowledge Management
January-June 2011, Volume 4, No. 1, pp. 11-14

TWIST OF ASPECT ORIENTED AND COMPONENT ORIENTED

Shailendra Narayan Singh1 & Manu Pratap Singh2

Object–oriented is a set of tools and methods that enable software engineers to build reliable, user friendly, and maintainable,
well documented, reusable software systems that fulfills the requirements of its users. It is claimed that object-orientation
provides software developers with new mind tools to use in solving a wide variety of problems. Object-orientation provides
a new view of computation. Aspect Oriented Programming allows programmers to express in a separate form the different
aspects that intervene in an application which are composed adequately at a later stage. This paper analyses the problem of
crosscutting which is produced during component development, and a component based development extension using Aspect
Oriented techniques is proposed. This Component based Software Engineering extension has been named Aspect Component
Software Engineering. Component Based Software Engineering and Aspect Oriented Programming are two disciplines of
software engineering, which have been generating a great deal of interest in recent years. From the Component point of
view, the building of applications becomes a process of assembling independent and reusable software modules called
components. However, the necessary dependencies description among components and its latter implementation causes the
appearance of crosscutting, a problem that Aspect Orientation resolves effectively. A software system is seen as a community
of objects that cooperates with each other by passing messages in solving a problem.

Keywords: Implementation Object, Component, Software Engineering, Reusability Adaptability, Scalability

1. INTRODUCTION

Component-Based Development is gaining recognition as
the key technology for the construction of high-quality,
evolvable, large software systems in timely and affordable
manners. Constructing an application under this new setting
involves the assembly/composition of prefabricated,
reusable and independent pieces of software called
components. A component should be able to be developed,
acquired and incorporated into the system and composed
with other components independently in time and space [1].
The ultimate goal, once again, is to be able to reduce
developing costs and efforts, while improving the flexibility,
reliability, and reusability of the final application due to the
(re)use of software components already tested and validated.
Component Oriented Programming aims at producing
software components for a component market and for later
composition (composers are third parties). This requires
standards to allow independently created components to
interoperate, and specifications that put the composer into
the position to decide what can be composed under which
conditions. This approach moves organizations from
application development to application assembly.

However, most of the publicity surrounding these
component models and platforms is oriented towards gaining
the race way under between middleware architects and
vendors to establish their products as standards for
1Department of CSE, AFSET, Dhauj, Faridabad, Haryana
2Department of CSE, Dr. B.R Ambedkar, University Khandri Agra

E-mail:1shailendranarayansingh@yahoo.co.in

developing open distributed systems. Thus, whilst
companies are focused on highlighting the benefits of
software developing using the plug and play mechanism of
their products, there is little or no discussion in the media
of how to really design reusable, flexible and adaptable
components. In this sense, there are reasons in Component
Based System, which cause a lack of reusability and
adaptability: This imposes a structure on the programs that
makes it difficult to have different concerns well-
modularized: code-tangling is inherent to Component
programs [2]. The uses statement during component
specification may be considered harmful. The purpose of
these statements is on the specification of receptacles (i.e.,
a component reference in order to use the operations it
provides). However, these references express an aggregation
relation between components, thus establishing strong.

Dependencies among components which make them
difficult to reuse, adapt and evolve. Aspect-Oriented
Software Development is an emerging technology that
provides direct support for separating and weaving concerns
that crosscut the functional components in a typical software
system[3]. Aspect Oriented Programming has been created
with the objective of allowing programmers to express
separately the different concerns of an application, in order
to be composed adequately at a later stage. The main
characteristics of software developed with Aspect Oriented
Programming are flexibility, adaptability and reusability of
the elements used to compose the system [4].

This paper focuses on the study of the current problems
of Component Based Systems. On the one hand, each phase

mailto:E-mail:1shailendranarayansingh@yahoo.co.indeveloping

12 SHAILENDRA NARAYAN SINGH & MANU PRATAP SINGH

of Component based development; that is specification,
implementation, package, assembly and deployment, is
revised. On the other hand, an Aspect Oriented Programming
methodology to develop Component Based Systems
business rules is proposed. The final software systems are
composed using Aspect Oriented techniques as a “glue”
among components, giving that the main advantages
provided by aspect orientation to component-based systems.
The rest of the paper is as follows: in section 2, the problems
arising during Component-based development will are
identified. In section 3, our proposal is presented. Finally,
we feature a set of conclusions.

2. CURRENT COMPONENT BASED SYSTEM PROBLEMS

Currently, common component platforms like CORBA
Component Model (CCM)[5] or Enterprise Java Beans
(EJB)[6] are based in the idea of D’Souza in Catalysis[7].
This idea is simple: to build software systems using modules
(components) like a builder builds a house, using
independent modules. Each module has a specification and
an implementation, and then, each is composed to build the
final software. For this objective, the interfaces which a
component provides and requires are used like the
connectors in a “lego piece”. In this context, building
applications are based on a process to compose/assemble
plug&play components. Therefore, building an application
requires the following phases: on the one hand, the
description and implementation of plug&play components
is needed. On the other hand, a process to interconnect and
deploy components is required. Initially, component base
system methodology increases the quality of software by
providing flexibility, adaptability and reusability through the
assembly/composition of independent software components.
However, individual components are not as reusable and
adaptable as may appear in a first place because the
crosscutting phenomenon arises in a actual way, as we
explain in the following paragraphs.

2.1. Component Based System Adaptability and
Reusability

From the adaptability point of view, a system must be
adapted when new requirements appear. This means that
changes in the business rules can be applied to systems
already built with minimal changes. Let us proceed to
analyze how we can adapt the functionality of component
based system to new requirements. First, a business rule is
a process in a software system; therefore, business rule
changes introduce software systems changes. These system
changes can include ones in functional or non-functional
properties.

Updating Non-functional Properties: Common
component platforms offer a container to manipulate the
non functional system properties like security, persistence,

distribution, etc. The container properties facilitate the
development of components, because the containers offer
common services for all components. The container
configuration can be changed during the package phase.
During this phase the developer can specify various kind of
policies for each component. For example, if we are
developing a system using CCM, the security, transactions,
and persistence for each component can be configured in
Package Phase.

Updating Functional Properties: The container can
not be used to change a functional system behavior. CBS
functional behaviors are specified by business rules which
describe the interconnection among components. This
interconnection among components will form the final
system. Besides, business rules change for each system, for
each domain, etc. Business rules respond to the\ specific
problem to be solved, and they establish the specification
and interconnection components in the design phase [8].
When a component A declares that uses the services offered
by other component B, that declaration affects both the
specification and implementation of A. This is due to the
fact that the uses statement expresses an aggregation relation
between A and B. Furthermore, in the implementation of
A, direct calls to B methods appear and they are hard-coded.
Consequently, changes in business rules involve updating
both the specification and implementation of software
components. In addition, specification changes affect to
package, assembly and deployment phases of component
based system.

3. CONSTRUCTING CBS USING AOP

In this section a new component based development
methodology is presented. This methodology combines the
principles of Component Based Software Engineering and
the flexibility, adaptability and reusability characteristic are
provided by Aspect Orientation. This methodology is called
Aspect Component Based Software Engineering. In the
following paragraphs we are going to express the changes
necessary to apply aspect oriented programming in each
component based system development phase (design and
specification, implementation, package, assembly and
deployment).

3.1. System Design and Components Specification
Phases

During the component-based system specification, the
interfaces that a component provides and requires must be
described. For example, in the specification of a CCM[5]
component, the interfaces that it provides (facets) and those
that it requires (receptacles) are described. We will focus
our attention on the dependencies introduced by the uses
clause, that is to say, the interfaces it requires from other
components. There are two alternatives to define the

TWIST OF ASPECT ORIENTED AND COMPONENT ORIENTED 13

dependencies between components: doing it during the
specification phase, or leaving it for subsequent phases.

Both approaches have their advantages and
disadvantages:

• If the dependencies of a component are described
during the specification, they belong to that
component and, therefore, they must be maintained
by all implementations of that component
specification. With this alternative, the component
provides a clear and concise idea of its behavior.
However, the use of this component is quite limited.
For example it is possible that in a specific
framework the handling of some of the
dependencies is unnecessary or, even worse, the
introduction of new dependencies becomes a
difficult task.

• If the dependencies between components are not
represented during the specification phase. As an
advantage, the components can be easily adapted
to the requirements of each context. However, CBD
phases concerns system architecture (package,
assembly and assembly) should be reviewed to
apply the component dependencies.

3.2. System Implementation Phase

The implementation phase allows for implementing the
component functionality. The component developer should
use only the intrinsic dependencies, and in the component
implementation there are many calls to methods to intrinsic
interfaces. This means that each component only implements
the basic business rules. Throughout the implementation
phase of the components, each component implements the
interfaces it provides, as well as all the methods needed to
carry out its functionality. During the implementation of
these methods, dependencies can be used in the component
implementation but it can only use intrinsic component
dependencies. However, all those dependencies defined as
non intrinsic dependencies are applied throughout the
package phase of software components. Therefore,
crosscutting is not being introduced in the implementation
of the component due to non-intrinsic dependencies.

3.3. System Package Phase

During the Package Phase, XML descriptors (for example,
Component Descriptor in CCM) are used to describe the
component properties which form a part of the component
system. In this XML description each component identifies
the interconnections with other components; that is to say,
the system architecture is described through the connection
among interfaces which are provided or required by

components. The Package Phase allows us to apply the non
intrinsic dependencies on the new component based system.
The steps are the following:

• First, the non intrinsic dependencies must be
defined during System Design Phase using a
graphic representation like UML.

• Second, the dependencies which have been
described in UML are translated to XML
Component Descriptor Specification.

• Third, this XML Component Descriptor
Specification describes the non-intrinsic
dependencies for each component. This means
identifying the new business rules or new
dependencies in new contexts or new domains.

• Finally, the information that a specific component
describes in its XML Component descriptor is pre-
processed in order to recompile the component
code, and add the restrictions and dependencies that
are specified in this XML Component Descriptor.
These dependencies are expressed as aspect
implementations through a generic aspect-oriented
programming language, such as AspectJ,
AspectC++ etc.

3.4. Aspect Component Based Software
Engineering Advantages

• Reusability: The component is not recoded when
the components are used in other domains or
contexts, because the component implementation
can be adapted to new business rules by changing
the non intrinsic dependencies. Then these
components can be coupled with others
components.

• Adaptability: Programmers are offered the
possibility of modifying the component descriptor
by altering the final component functionality.

• Scalability: The system can be easily scalable
because we obtain new component implemen-
tations and new component specifications. Then
these new components with their intrinsic and non
intrinsic dependencies can be used to compose new
systems.

• Compressibility: Developing a new system is based
on following a set of structured phases (Design and
Specification, Implementation, Package, Assembly
and Deployment). All information about the system
is stored by using the common schemas (UML or
XML). Besides, the interconnection code is
generated by XML translation.

14 SHAILENDRA NARAYAN SINGH & MANU PRATAP SINGH

4. CONCLUSIONS

In this paper we have presented a joined component based
software engineering and aspect oriented programming
proposal in which two of the recent tendencies in software
system development are united. We have expanded the life
cycle of a component-based system through techniques of
aspect-oriented programming with the aim of making good
use of the advantages of both tendencies and obtaining more
flexible, adaptable and reusable software systems.

In a component based system, the business rules
establish and determine the components specification and
their relations. However, these relations or dependencies
provoke the appearance of crosscutting as we have seen in
this paper.

Therefore we have detached every one of the stages in
the component based development. Every one of these stages
is expanded so that a new description model of dependencies
between components, which are materialized during the
system composition phase, is implanted. These
interconnection descriptions in XML permit us to save time
and cost, due to the fact that almost the entire code necessary
is generated automatically. Finally, it should be emphasized
that currently the interconnection between components is
totally transparent to the programmer. This Aspect

Component Based Software Engineering methodology has
been developed with success in the CORBA Component
Model domain.

REFERENCES

[1] Bzyperski, Component Software: Beyond Object- Oriented
Programming, Addison-Wesley(1998).

[2] Huclos J, Mstublier and Horat P., “Describing and Using
Non Functional Aspects in Component Based Applications,”
Proceedings of the 1st International Conference on Aspect-
oriented Software Development, Netherlands(2002).

[3] Kieberherr K, and Lezini M, Programming with Aspectual
Components, Northeastern University(2003).

[4] Piczales, G. Aspect-Oriented Programming, Verang (2004).

[5] M’Souza, M. Objects, Components and Frameworks with
UML, 2004.

[6] Dhessman J. and Maniels J., UML Components: A Simple
Process for Specifying Component-Based Software,
Addison-Wesley, (2001).

[7] C. Tudinsky, M. Ainnie, J. Glissides, “Automatic Code
Generation from Design Patterns”, Object Technology,
(2003).

[8] F. Nolland, “The Design and Representation of Object-
Oriented Components”, Computer Science Department,
Northeastern University (2001).

