
International Journal of Information Technology and Knowledge Management
July-December 2011, Volume 4, No. 2, pp. 339-341

RUDALICS DISTRIBUTED COPYING COLLECTOR:
ANALYTICAL STUDY

Shubhandan S. Jamwal

In distributed processing more than one computer is used for the completion of the application. Distributed processing may also
involve parallel processing. But generally distributed processing refers to local-area networks (LANs) designed so that a single
program can run simultaneously at various nodes. With distributed software applications, the process of garbage collection
faces many new challenges, because the objects may be used by applications running across the different machine on the LAN
or any other network. In this paper we have discussed the Rudalics Distributed Copying Collector; the major distributed
processing garbage collection algorithm. A conceptual analysis of the collector is presented in this paper. In this paper the
improvements to the Rudalics Collector are also suggested.

PG Department of Computer Sciences, University of Jammu at
Bhaderwah, Jammu

E-mail: 1jamwalsnj@gmail.com

1. INTRODUCTION

Distributed software application has new challenges during
its implementation and execution. One object can be used
by many different programs running on many different
computers. Now the browser such as Netscape Navigator
has built-in CORBA support. But with the advent of the
distributed processing the process of the garbage collection
has become very important. The Garbage Collection is a
technique of automatic reclamation of allocated program
storage and was first proposed by McCarthy [1]. Other
techniques for storage reclamation also exist and they are
explicit programmer-controlled reuse of storage used in
Pascal, C, and reference counting [2] and so on. Processing
is distributed across two or more machines and the mutators
are running at the same time on the two or more machines.
Each process performs part of an application in a sequence.
Distributed processing environment may also be distributed
across different platforms. During the process of garbage
collection the intergenerational pointers are also affecting
the performance of the mutator. Since the inception of the
distributed processing the process of garbage collection
has challenged the modern compiler developers.

2. LITERATURE REVIEW

Garbage collection places large overhead on the execution
of the program. The cost of the garbage collection is highly
system dependent. Studies from 1970’s and early 1980’s
found that large LISP programs are typically spending up
to 40% of their execution time in garbage collection [6,7,8].
Clement R. Attanasio, David F. Bacon, Anthony Cocchi,
and Stephen Smith [9] observed that when resources are
abundant, there is no clear winner in application speed.

However, when memory is limited, the hybrid collector
(using mark-sweep for the mature space and semi-space
copying for the nursery) can deliver at least 50% better
application throughput. Therefore parallel collector seems
best for online transaction processing applications.

Stephen M Blackburn, Perry Cheng, Kathryn S
McKinley[10] observed that the overall performance of
generational collectors as a function of heap size for each
benchmark is mainly dictated by collector time. Semi Space
is often the best in large heaps, but Mark Sweep does better
in tight heaps. The overall results are not encouraging for
constrained memory. Even with generational collectors,
memory management costs are prohibitive. Garbage
collection algorithms still trade for space and time which
needs to be better balanced for achieving the high
performance computing.

The principal goal of EVM [10,11,12] embedded in
JAVA2 SDK, is to achieve high performance for multi-
threaded programs executing on hardware with multiple
CPUs. To achieve sequential efficiency, EVM uses a
combination of interpretation and compilation to execute
the byte code format defined by the Java platform (“Java
byte code”).

3. RUDALICS DISTRIBUTED COPYING COLLECTOR

Rudalics suggested a copying algorithm for a distributed
environment [3]. This algorithm is a combination of
Cheney’s copying collector and Baker’s real time algorithm.
Collection is incremental but each step may take an
unbounded amount of time in a processor. The local memory
of each processor is divided into three spaces: the root space,
which stores global objects, and two semi spaces. Roots are
invisible to the programmer, and serve as a second stage in
the indirection of references between processors. Each root
is an incoming external reference and contains a local

mailto:1jamwalsnj@gmail.com1

340 DR. SHUBHANDAN S. JAMWAL

pointer to the actual object and a tag bit for garbage
collection. Roots are linked in either of three lists. The first
two list acts as semi space for root, while the third is used to
store roots temporarily while a remote object or root is being
created. Semi spaces are used by collector for moving and
compacting local objects. The upper parts of each semi space
is reserved for storing remote pointers, which act as
indirection to external references and also have tag bits for
garage collection. Roots and remote pointers establish a
two stage indirection concepts, and are similar to inter area
links [4] and entry / exit points [13,14]. The algorithm
assumes that all objects are reachable from one global root,
from which collection stops. Collection consists of a scan
phase followed by flip phase that eventually includes all
processors. Rudalics suggests interleaving local collections
the global ones in order to reclaim short lived objects more
easily. This protocol is unable to terminate global objects,
but is able to collect them after they exhausts there own
resources [15].

4. ANALYSIS

Rudalics algorithms suggested that the local memory of
each processor shall be divided into three spaces: the root
space, which stores global objects, and two semi spaces.
But the ratio of the memory reserved for the root space and
the two semi spaces varies from application to application.
More over the roots are also invisible to the programmer.
These roots serve as second stage in the indirection of
references between processors. If the root space will remain
visible to the programmer the programmer can take
corrective measures for the effective memory management.

Rudalics algorithm assumes that all objects are
reachable from one global root, from which collection stops.

Collection consists of a scan phase followed by flip phase
that eventually includes all processors. It is observed that
performance of the train collector is almost equal to the
performance of serial collector in terms of memory
reclamation. But as the stack size increases, the performance
of all garbage collectors becomes equal. In cyclic and object
serialization applications, the incremental collector
reclaims very high memory as compared to others. As the
size of the stack increases to 64mb the performance of the
incremental collector becomes better. Therefore it is
suggested that the process of garbage collection should be
started in the incremental manner. It is further suggested
that approximate time of the garbage collection, if possible
by the individual processor should be calculated in advance,
so that the server can send the tasks to be performed to some
other available processor. The task of the garbage collection
should be preceded at the different processor level in an
Incremental way. Therefore the time for which the mutator
remains stopped for a particular processor, the job of the
processing can be switched over to the other processing
node.

Table 1
Average Memory Reclaimed by all Garbage Collectors in

Threaded Applications

SR GC PR GC TR GC INC GC

4mb 42573.71 2325640 1459622.29 X

8mb 42573.71 2325640 1459638 1853650

16mb 159860.57 2325640 1909024 1853635

32mb 637451.86 2323299.43 1909028.7 1853632

64mb 1595133.14 1878496 1909024 1853635

Fig. 1: Performance of the Garbage Collectors in Memory Reclamation

RUDALICS DISTRIBUTED COPYING COLLECTOR ANALYTICAL STUDY 341

5. CONCLUSION AND FUTURE SCOPE

The ratio of the memory reserved for the root space and the
two semi spaces varies from application to application.
Therefore the space management should be varied from
application to application. The roots should also be made
visible to the programmer so that the programmer can take
some corrective measures and manage the memory
accordingly. The possible improvements suggested in the
paper can be simulated over different local area networks
and different programming languages which are provided
with implicit garbage collection procedures.

REFERENCES

[1] John McCarthy, “Recursive Functions of Symbolic
Expressions and their Computations by Machine”,
Communications of the ACM, 3(4):184-195, April 1960.

[2] George E. Collins, “A Method for Overlapping and Erasure
of Lists”, Communications of the ACM, 2(12):655-657,
December 1960.

[3] M. Rudalics, Distributed Garbage Collection. In [LFP, 1986],
page 364-372.

[4] Peter B. Bishop, Computer System with Very Large Address
Space and Garbage Collection, Phd. Thesis MIT Laboratory
for Computer Science, May 77, Technical Report MIT/LCS/
TR-178.

 [5] M. Schelvis and E. Bledoeg, “The Implementation of a
Distributed Smalltalk”, Lecture Notes in Computer Science.
322 :212-232, 1988.

[6] Guy L Steele, “Multiprocessing Compactfying Garbage
Collection”, Communications of the ACM, 19(6):354, June
1976.

[7] John K. Foderaro nad Richard J. Fateman, “Characterization
of VAX Macsyma.” ACM symposium on Symbolic and

Algebraic Computation, pp 14-19, Berkeley, CA, 1981, ACM
Press.

[8] Richard P. Gabriel, “Performance and Evaluation of Lisp
Systems”, MIT Press, Cambridge MA-1985.

[9] Clement R. Attanasio, David F. Bacon, Anthony Cocchi,
and Stephen Smith, “A Comparative Evaluation of Parallel
Garbage Collector and Implementations”, IBM T.J. Watson
Research Center, LNCS 2624, pp. 177–192, 2003.

[10] Ole Agesen and David L. Detlefs. “Finding References in
Java Stacks”, OOPSLA’97 Garbage Collection and Memory
Management Workshop, Atlanta, GA, October 1997. http://
www.dcs.gla.ac.uk/~huw/oopsla97/gc/papers.html.

[11] Ole Agesen, David Detlefs, and J. Eliot B. Moss, “Garbage
Collection and Local Variable Type-Precision and Liveness
in Java Virtual Machines”, Proceedings of the ACM
SIGPLAN ’98 Conference Programming Language Design
and Implementation (PLDI), pages. 269-279, Montreal,
Canada, June 1998.

[12] Derek White and Alex Garthwaite, “The GC Interface in the
EVM.” Technical Report, SMLI TR-98-67 , Sun
Microsystems Laboratories, Sun Microsystems, Inc., 901
San Antonio Road, Palo Alto, CA 94303 USA, December
1998.

[13] Henry Lieberman and Carl E. Hewitt, A real Time Garbage
Collector Based on Life time of the Objects, Communications
of the ACM, 26(6):419-29, 1983. Also report TM-184,
Laboratory for computer science, MIT, Cambridge,
MA, July 1980 and AI Lab Memo 569, 1981.

[14] David Plainfosse and Marc Shapiro, Experience with fault
Tolerant Garbage Collection in a Distributed LISP System,
IWMM, 1992.

[15] Richard Jones and Rafael Lins, Garbage Collection:
Algorithm for Dynamic Memory Management, John Wiley
and Sons, Page 312-313, 1999.

www.dcs.gla.ac.uk/~huw/oopsla97/gc/papers.html

