
International Journal of Information Technology and Knowledge Management
July-December 2011, Volume 4, No. 2, pp. 559-567

NEW PARADIGMS IN CHECK-POINTING TECHNIQUES IN
DISTRIBUTED MOBILE SYSTEMS

Ruchi Tuli1 & Parveen Kumar2

Distributed systems today are ubiquitous and enable many applications, including client–server systems, transaction processing,
the World Wide Web, and scientific computing, among many others. Distributed systems are not fault-tolerant and the vast
computing potential of these systems is often hampered by their susceptibility to failures. Many techniques have been developed
to add reliability and high availability to distributed systems. These techniques include transactions, group communication, and
rollback recovery. These techniques have different tradeoffs and focus. This paper surveys the various algorithms from the
literature for checkpointing Mobile Computing systems, which restore the system back to a consistent state after a failure.

Keyword: Mobile Computing Systems, Co-ordinated Checkpoint, Rollback Recovery, Mobile Host, Mobile Support Station

1Lecturer, Yanbu University College, Yanbu, Kingdom of Saudi
Arabia

2Professor, Meerut Institute of Engineering & Technology, Meerut
(INDIA)

E-mail: 1tuli.ruchi@gmail.com

1. INTRODUCTION

Rollback recovery treats a distributed system application
as a collection of processes that communicate over a network.
It achieves fault tolerance by periodically saving the state
of a process during the failure-free execution, enabling it to
restart from a saved state upon a failure to reduce the amount
of lost work. The saved state is called a checkpoint, and the
procedure of restarting from a previously checkpointed state
is called rollback recovery. A checkpoint can be saved on
either the stable storage or the volatile storage depending
on the failure scenarios to be tolerated.

In distributed systems, rollback recovery is complicated
because messages induce inter-process dependencies during
failure-free operation. Upon a failure of one or more
processes in a system, these dependencies may force some
of the processes that did not fail to roll back, creating what
is commonly called a rollback propagation. To see why
rollback propagation occurs, consider the situation where
the sender of a message m rolls back to a state that precedes
the sending of m. The receiver of m must also roll back to a
state that precedes m’s receipt; otherwise, the states of the
two processes would be inconsistent because they would
show that message m was received without being sent, which
is impossible in any correct failure-free execution. This
phenomenon of cascaded rollback is called the domino
effect. In some situations, rollback propagation may extend
back to the initial state of the computation, losing all the
work performed before the failure.

In a distributed system, if each participating process
takes its checkpoints independently, then the system is
susceptible to the domino effect. This approach is called
independent or uncoordinated checkpointing [1], [2], [3].
It is obviously desirable to avoid the domino effect and
therefore several techniques have been developed to prevent
it. One such technique is coordinated checkpointing [4],
[5], [6] where processes coordinate their checkpoints to form
a system-wide consistent state. In case of a process failure,
the system state can be restored to such a consistent set of
checkpoints, preventing the rollback propagation.
Alternatively, communication-induced checkpointing [7],
[8], [9] forces each process to take checkpoints based on
information piggybacked on the application messages it
receives from other processes. Checkpoints are taken such
that a system-wide consistent state always exists on stable
storage, thereby avoiding the domino effect.

The approaches implement checkpoint-based rollback
recovery, which relies only on checkpoints to achieve fault-
tolerance. Log-based rollback recovery [10], [11], [12], [13],
[14], [15], [16] combines checkpointing with logging of
nondeterministic events. Log-based rollback recovery relies
on the piecewise deterministic (PWD) assumption, which
postulates that all non-deterministic events that a process
executes can be identified and that the information necessary
to replay each event during recovery can be logged in the
event’s determinant. By logging and replaying the non-
deterministic events in their exact original order, a process
can deterministically recreate its pre-failure state even if
this state has not been checkpointed. Log-based rollback
recovery in general enables a system to recover beyond the
most recent set of consistent checkpoints. It is therefore
particularly attractive for applications that frequently
interact with the outside world, which consists of input and
output devices that cannot roll back.

mailto:ruchi@gmail.com1

560 RUCHI TULI & PARVEEN KUMAR

2. SYSTEM MODEL

Most of the algorithms considered in this paper use the
common system model in which a mobile computing system
consists of a set of mobile hosts (MHs) and mobile support
stations (MSSs). The static MSS provides various services
to support the MHs and a region covered by a MSS is called
a cell. A wireless communication link is established between
a MH and a MSS; and a high speed wired communication
link is assumed between any two MSSs. The wireless links
support FIFO communication in both directions between a
MSS and the MHs in the cell wired links.

A distributed computation is performed by a set of MHs
or MSSs in the network. A process experiences a sequence
of state transitions for its execution and the atomic action
which causes the state transition is called an event. An event
is internal if it causes no interaction with another process.
The message-sending and message-receipt events are the
external events. A sequence of events within a process is
called a computation. In case of a failure, a process stops
the execution and does not perform any malicious action.

3. CHECKPOINTING ALGORITHMS FOR MOBILE

COMPUTING SYSTEMS

Checkpointing techniques are studied under Asynchronous
or uncoordinated, Synchronous or coordinated and quasi-
synchronous or communication-induced checkpointing
schemes. In this section, we discuss the various algorithms
that have been proposed in literature for each of these
schemes. Figure 1 shows the classification of these schemes.

 Fig.1: Classification of Checkpointing Schemes

3.1 Asynchronous or Uncoordinated or
Independent Checkpointing

In uncoordinated checkpointing, each process has
autonomy in deciding when to take checkpoints. This
eliminates the synchronization overhead as there is no need
for coordination between processes and it allows processes
to take checkpoints when it is most convenient or efficient.
The main advantage is the lower runtime overhead during
normal execution, because no coordination among processes
is necessary. Autonomy in taking checkpoints also allows
each process to select appropriate checkpoints positions.

Park, Woo and Ycom[17] proposed an algorithm based
on independent checkpointing and asynchronous message

logging. All the messages are delivered to mobile host (MH)
through MSS, so message logs are saved by MSS for all
MHs in its vicinity. These logs are used to are used to recover
state of process at MH after failure. Also, to reduce the
message overhead, the mobile support stations also take
care of the dependency tracking. The description of
alroithms is as follows – When the mobility and failure rate
of MHs is high then message logs of a MH may be distributed
on number of MSSs which may be a number of hops away
from current MSS. Distributed storage at MSS needs to be
managed so as to reduce the cost of collection of message
logs of MH after failure.

Park, Woo and Ycom[18] proposed a scheme based on
the message logging and independent checkpointing, and
for the efficient management of the recovery information,
such as checkpoints and message logs, the movement-based
scheme is suggested. This scheme allows the movement of
checkpoint and message logs to a nearby MSS when either
distance between MH and MSS on which latest checkpoint
is saved exceed a threshold value, or, when number of
handoffs that number of MSS carrying message logs of a
MH exceeds a threshold value. These schemes keep the
recovery information of MH in certain range. The
movement-based scheme considers both of the failure-free
execution cost and the failure-recovery cost. The scheme is
explained as – Each mobile host MH periodically takes a
checkpoint and the time period between two consecutive
checkpointing of MH is determined by itself. For
checkpointing, each MH first saves its current state as a
checkpoint and assigns a unique sequence number to the
checkpoint. C

i
α denotes the α-th checkpoint of MH

i
 and

the pair of integers (i, α) is used as identifier for C
i

α. Each
MH also stores Id of center MSS in its stable storage and
each MSS has a set of MSS which comes under its scope
which is measured according to threshold distance between
two MSS. When a MH moves between two cells, its recovery
information is not required to be moved, if a MH moves
from MSS

p
 to MSS

q
belonging to the scope of MSS

p
. The

biggest disadvantage of this scheme is that once a MH
moves to another cell not in the scope of center MSS of
MH, all the recovery information of MH need to be migrated
and if it returns back partial recovery information may be
unnecessary migrated.

Zhang, Zuo, Zhi- Bowu and Yang [19] improved this
scheme by migrating only partial recovery information of a
MH when a MH moves out of the range. It means that
recovery information of MH which is contained in some
MSS due to mobility, is mapped to another set of MSSs.
These MSSs are given by route function. The main
advantage of this scheme is that one MSS is not burdened
by transferring all the information to it.

Another movement-based algorithm was proposed by
E. George, Chen and Jin [20] in which each MH maintain a
counter which is incremented by 1 when MH performs a

NEW PARADIGMS IN CHECK-POINTING TECHNIQUES IN DISTRIBUTED MOBILE SYSTEMS 561

handoff to another cell. Once this counter becomes greater
than a predefined value, a checkpoint is taken. This counter
depends on the user’s mobility rate, failure rate and log
arrival rate. Each MH also maintains a set of MSS which
stores MH’s log after latest checkpoint. When a MH performs
a handoff, a new MSS is added to this set if MH sends atleast
one message in the cell to the new MSS and if MSS has
already not been added to the set. MSS logs messages before
sending them to the destination. These messages are
retrieved from MSS to recover a failure free state of MH
after failure occurs. Once a new checkpoint is successfully
taken by MH, set of MSS stored in MH is cleared and a
message is sent to the MSS in the set to clear the log related
to MH. Thus, storage overhead is reduced.

3.2 Coordinated Checkpointing

In this we will discuss the algorithms for both blocking and
non-blocking coordinated checkpointing schemes.

3.2.1 Blocking Coordinated Checkpointing
A straightforward approach to coordinated checkpointing
is to block communications while the checkpointing
protocol executes. After a process takes a local checkpoint,
to prevent orphan messages, it remains blocked until the
entire checkpointing activity is complete. The coordinator
takes a checkpoint and broadcasts a request message to all
processes, asking them to take a checkpoint. When a process
receives this message, it stops its execution, flushes all the
communication channels, takes a tentative checkpoint, and
sends an acknowledgment message back to the coordinator.
After the coordinator receives acknowledgments from all
processes, it broadcasts a commit message that completes
the two-phase checkpointing protocol. After receiving the
commit message, a process removes the old permanent
checkpoint and atomically makes the tentative checkpoint
permanent and then resumes its execution and exchange of
messages with other processes. A problem with this approach
is that the computation is blocked during the checkpointing.

A two-level blocking checkpointing algorithm was
proposed by Lotfi, Motamedi and Bandarabadi [21] in
which local and global checkpoint are taken. Nodes take
local checkpoint according to checkpoint interval
calculated previously based on failure rate and save it in
their local disk. These checkpoints when sent to stable
storage become global checkpoint. Local checkpoints are
used to recover from more probable failures where as global
checkpoints are used to recover from less probable failures.
After each checkpointing interval, system determines
expected recovery time in case of permanent failure. System
calculates amount of time taken (T1) to recover if system
does not take global checkpoint and amount of time taken
(T2) to recover if system takes global checkpoint. Then
system compares these two times. If T2 < T1, system will
take global checkpoint else system will only store
checkpoint locally.

Lalit - P. Kumar algorithm for mobile distributive
systems [22]: in 2007 Lalit Kumar Awasthi and P. Kumar
presented a new algorithm for synchronous checkpointing
protocol for mobile distributed systems. In the algorithm
they reduced the useless checkpoints and blocking using a
probabilistic approach that computes an interacting set of
processes on checkpoint initiation. A process checkpoint if
the probability that it will get a checkpoint request in
current initiation is high. A few processes may be blocked
but they can continue their normal computation and may
send messages. They also modified methodology to
maintain exact dependencies. They show that their
algorithm imposes low memory and computation overheads
on MHs and low communication overheads on wireless
channels. It avoids awakening of a MH if it not required to
take its checkpoint. A MH can remain disconnected for an
arbitrary period of time without affecting checkpointing
activity.

Another blocking coordinated scheme is proposed by
Suparna Biswas and Sarmistha Neogy [23] in which each
MSSp is required to maintain an array A[n] in which A[1] is
1 when MH1 is present in vicinity of cell of MSSp where
number of MH (Mobile Host) are n starting from 0 to n-1.
A MH initiates checkpointing procedure, calculates its
dependency vector D and sends request to all the MH whose
bit in dependency vector D is 1 via its MSS. If a MH is
present in vicinity of current MSS, then checkpoint request
is send directly to MH. Else current MSS will broadcast
checkpoint request message to other MSS so that it can
reach all those processes whose bit is 1 in dependency vector
D calculated by checkpoint initiator. Thus all these
processes take checkpoint and sends information to initiator
via their local MSS.

Guohui Li and LihChyun Shu [24] designed an
algorithm to reduce blocking time for checkpointing
operation, in which each process Pi maintains a set of
processes Si. A process Pj is included in this set if Pj has
sent at least one message to Pi in current checkpoint interval.
Checkpointing dependency information is transferred from
sending process to destination process during normal
message transmission. So when a process starts a
checkpointing procedure, it knows in advance the processes
on which it depends both transitively and directly.

Biswas & Neogy [25] proposed a checkpointing and
failure recovery algorithm where mobile hosts save
checkpoints based on mobility and movement patterns.
Mobile hosts save checkpoints when number of hand-offs
exceed a predefined handoff threshold value. They
introduced the concept of migration checkpoint An MH
upon saving migration checkpoint, sends it attached with
migration message to its current MSS before disconnection.
The latest MSS of disconnected MH participates in
checkpointing with m_checkpoint hiding the fact that the
MH is still disconnected. During checkpointing
participating MHs are barred only from receiving execution

562 RUCHI TULI & PARVEEN KUMAR

message as it will change list of dependent MHs in current
checkpoint interval. The algorithm is described as - In a
mobile computing system all the MHs are connected to
MSSs. MHs move in any possible direction with a fixed
mobility rate in the system assumed in algorithm. As MHs
move hand-off will occur. If hand-off count exceeds
predefined threshold value, it initiates checkpoint protocol,
saves a temporary checkpoint and sends checkpoint
initiation message to its current MSS. Current MSS now
coordinates checkpointing. MSSco forwards checkpoint
request message to all MHs dependant on initiator MH
during current checkpoint interval. MHDs save temporary
checkpoint and send reply to MSSco. MSSco converts
MHi’s temporary checkpoint to permanent checkpoint and
forwards reply all MHDs. MHDs convert temporary
checkpoint to permanent checkpoint and send commit
message to MSSco.

3.2.2. Non-Blocking Coordinated Checkpointing
Algorithm

In this approach the processes need not stop their execution
while taking checkpoints. A fundamental problem in
coordinated checkpointing is to prevent a process from
receiving application messages that could make the
checkpoint inconsistent. Consider the example in Figure
2: message m is sent by P

0
 after receiving a checkpoint

request from the checkpoint coordinator. Assume m reaches
P

1
 before the checkpoint request. This situation results in

an inconsistent checkpoint since checkpoint c
1, x

 shows the
receipt of message m from P

0
, while checkpoint c

0,x
does not

show m being sent from P
0
. If channels are FIFO, this problem

can be avoided by preceding the first post-checkpoint
message on each channel by a checkpoint request, forcing
each process to take a checkpoint before receiving the first
post-checkpoint message, as illustrated in Figure 2(b).

Fig.2: Non-Blocking Coordinated Checkpointing : (a)
Checkpoint inconsistency (b) Solution with FIFO channels

Cao and Singhal presents in [26] a non-blocking
coordinated checkpointing algorithm with the concept of
“Mutable Checkpoint” which is neither temporary nor
permanent and can be converted to temporary checkpoint
or discarded later and can be saved anywhere, e.g., the main
memory or local disk of MHs. In this scheme MHs save a
disconnection checkpoint before any type of disconnection.

This checkpoint is converted to permanent checkpoint or
discarded later. In this scheme only dependent processes
are forced to take checkpoints. In this way, taking a mutable
checkpoint avoids the overhead of transferring large amounts
of data to the stable storage at MSSs over the wireless
network. They presented techniques to minimize the number
of mutable checkpoints. By simulation results they show
that the overhead of taking mutable checkpoints is
negligible. Based on mutable checkpoints, non-blocking
algorithm avoids the avalanche effect and forces only a
minimum number of processes to take their checkpoints on
the stable storage.

Cao-Chen-Zhang-He [27] proposed an algorithm for
Hybrid Systems. He presented an algorithm which was
developed for integrating independent and coordinated
checkpointing for application running in a hybrid
distributed system containing multiple heterogeneous
systems. The algorithm has many advantages mainly its easy
to implement, no change is required for subsystems with
coordinated checkpointing schemes and low extra workload
for the coordinated checkpointing subsystem.

Bidyut – Rahimi- Liu [28]: in 2006 presented their work
for mobile computing systems. In that work they presented
a single phase non blocking coordinated checkpointing
suitable for mobile systems. This algorithm produces a
consistent set of checkpoints without the overhead of
temporary checkpoints.

Bidyut-Rahimi-Ziping Liu [29] presented non blocking
checkpointing and recovery algorithms for bidirectional
networks. The proposed algorithm allowed the process to
take permanent checkpoints directly, without taking
temporary checkpoint global snapshot algorithms for large
scale distributed systems. Whenever a process is busy it
takes a checkpoint after completing its current procedure.
The algorithm was designed and simulate for Ring network.

Ch. D. V Subha Rao and M.M Naidu [30] introduced
the concept of active interval for handling orphan messages
and lost messages. Active interval is the time that elapses
between two events of sending “prepare checkpoint” and
“take checkpoint” message by initiator to all the processes.
Messages are said to be lost if it is sent in active interval of
a process P

i
 to P

j
 but received after active interval of Pj or

not received at all. A message becomes an orphan message
if it is sent by sender after its active interval and received by
receiver before or in the active interval (AI). Three Counters
are maintained – one for counting number of messages sent
by a process i in its AI denoted by Sendi, two counters for
receiving messages by process j before AI and in AI denoted
by RMj_before and RMj_in respectively. By simple
arithmetic (number of messages that are lost by process
j = Sendi – (RMj_before RMj_after)) we can determine
number of messages that are lost so that they can be replayed
from sender side log. Orphan messages are handled by

NEW PARADIGMS IN CHECK-POINTING TECHNIQUES IN DISTRIBUTED MOBILE SYSTEMS 563

allowing receiver to maintain SSN for each message in its
latest checkpoint which is count of number of messages
received by the process uptil the last checkpoint.

If sender tries to replay any message whose SSN is less
than or equal to SSN of receiver, receiver discard it as orphan
message.

Awadesh kumar Singh in [31] proposed a non blocking
algorithm in which a predefined checkpoint interval T is set
on timers of all the MHs which is a deadline to take next
checkpoint if process has sent any message in current
checkpoint interval. Initially, every process sends a snapshot
of its initial state (termed as 0th checkpoint) to its local
MSS. A computation message is piggybacked with two
values i.e. checkpoint sequence number Nj of sender Pj and
local timer of MSS which is closest to receiver. Receiver
sets its timer equal to this received time to achieve
synchronization. On reception of computation message m
by a process Pi, it checks its local timer has expired or not.
If local timer has not expired, then it checks whether Nj of
sender Pj is greater than Ni of receiver Pi. If it is true then Pi
sets flag variable (If set to 0, process take checkpoint after
expiry of its local timer otherwise checkpoint is not taken
after expiry of local timer) to 1 and takes checkpoint if
atleast one message is sent by process Pi in current
checkpoint interval. Afterwards, Pi processes the received
message m. As flag is set to 1 so Pi does not take checkpoint
after expiry of its local timer. If Nj of sender Pj is not greater
than Ni of receiver Pi, Pi processes the message m without
taking checkpoint. Pi then takes checkpoint after expiry of
local timer if it has sent atleast one message in current
checkpoint interval. A global checkpoint consists of all the
Nth checkpoints sent to stable storage by each process.

Partha Sarathi Mandal and Krishnendu
Mukhopadhyaya [32] proposed a non blocking algorithm
that uses the concept of mobile agent to handle multiple
initiations of checkpointing. Mobile Agent has id same as
its initiator id and it migrates among processes, perform
some work, take some actions and then moves to other node
together with required information. Each process takes
initial permanent checkpoint and sets version number of
checkpoint to 0. Process sends application message m by
piggybacking it with version number of its latest
checkpoint. Receiver compares application message’s
version number with its own current checkpoint version
number to decide whether to take checkpoint first or simply
to process message only. There is a DFS which is maintained
by each process which contains id of neighbors on which
the process depends.

3.3 Communication Induced or Quasi-
Synchronous Checkpointing

It lies between synchronous and asynchronous
(independent) checkpointing. Process takes communication
induced checkpoints besides independent checkpoint to

reduce number of useless checkpoints taken in independent
checkpointing approach. Processes takes two kinds of
checkpoints called local checkpoints and forced
checkpoints. Local checkpoints are just like independent
checkpoints taken in independent checkpointing approach.
Forced checkpoints are taken to guarantee eventual progress
of recovery line. During normal operation, checkpoints are
taken normally but when failure happens then a recovery
line is found to determine consistent global checkpoint
among multiple checkpoints taken by each process.

Qiangfeng Jiang and D. Manivannan [33] presented
an optimistic checkpointing and selective message logging
approach for consistent global checkpoint collection in
distributed systems. In this work they presented a novel
quasi-synchronous checkpointing algorithm that makes
every checkpoint belong to a consistent global checkpoint.
Under this algorithm every process takes tentative
checkpoints and optimistically logs messages received after
a tentative checkpoint is taken and before the tentative
checkpoint is finalized. Since tentative checkpoint can be
taken any time and sorted in local memory, tentative
checkpoints taken can be flushed to stable storage anytime
before that checkpoint is finalized.

Ajay D Kshemkalyani algorithm [34] presented a fast
and message efficient algorithm and show that new
algorithm is more efficient. He presented two new algorithms
Simple Tree and Hypercube that use fewer message and
have lower response time and parallel communication times.
In addition the hypercube algorithm is symmetrical and
has greater potential for balanced workload and congestion
freedom. This algorithm have direct applicable in large scale
distributed systems such as peer to peer and MIMD
supercomputers which are a fully connected topology of a
large number of processors. This algorithm is also useful for
determine checkpoint in large scale distributed mobile
systems.

Jin Yang, Jiannong Cao, Weigang Wu [35] proposed a
communication induced checkpointing scheme in which
communication induced or forced checkpoints are taken
by a process by analyzing piggybacked information that
comes with received message. Each process has a logical
clock or counter which is increased with every new
checkpoint taken. When a process sends an application
message, it piggybacks recent value of logical clock on
message. Receiver compares its LC (logical clock) with
received LC to decide whether to take a forced checkpoint
before processing message or simply process the message.

Algorithm uses a Mobile Agent (MA) system which
has a globally unique id. Each MA executes on a node and
takes an independent checkpoint before migration. It then
determines next host to which it has to migrate, it reaches
on that host and takes a checkpoint on it. This process will
continue until all hosts have been visited. These
checkpoints are called local checkpoints.

564 RUCHI TULI & PARVEEN KUMAR

Table 1
Comparison of Various Checkpoint Algorithms for Mobile Computing Systems

S. No. Algorithm Features Advantages Disadvantages Approach

 Uncoordinated Checkpointing

1. T.Park [17], An algorithm based on 1. Recovery of an MH is 1. Distributed storage Centralized
2002 independent checkpointing, performed independently at MSS need to be

optimistic and asynchronous 2. Message logging & managed so as to reduce
message logging is proposed dependency tracking is the cost collection of

performed by MSS to utilize message logs of MH
volatile space at MSS after failure

2. T.Park [18], Distance and frequency based 1. Movement based scheme 2. All the recovery Centralized
2003 movement scheme in which used to handle distributed information of MH

managing distributed storage storage, controls transfer needs to be migrated
of message logs of MH when cost as well as recovery to MSS when it moves
a mobile host is saving message cost out of the scope of
logs at these MSSs is described. current MSS

3. Only partial recovery
information may be
available if MH returns
back to previous MSS

3. Zhang [19], Recovery information of MH 1. Independent checkpointing 1. Storage overhead at Centralized
2008 which is contained in some algorithm MH is still not reduced

MSS due to mobility, is 2. Failed nodes can recover
mapped to another set of independently
MSSs when distance between 3. All the recovery information
MH & MSS exceed threshold of a MH is not transferred to
value. These MSSs are given single MSS, so one MSS will
by route function. not be bottleneck of failure and

access

4. E.George Independent checkpointing and 1. When a MH crosses a distance Distributed
[20], 2006 optimistic message logging is used. threshold from the location

MH takes checkpoint when its of latest checkpoint, recovery
handoff_counter becomes greater information is collected and
than a predefined threshold. transferred to MH’s local MSS

2. Storage management is done by
removing the log entry from
MSS when checkpoint is
successfully taken.

Blocking Coordinated Checkpointing

5. Lofti [21], A two level blocking 1. Low overhead than one Distributive
2009 checkpointing algorithm level scheme as local

in which local and global checkpoints are used for
checkpoints are taken more probable failures and

global checkpoints are used
for less probable failures.

6. P. Kumar Synchronous checkpointing 1. low memory and computation 1. A MH can remain Distributive
[22], 2007 protocol for mobile computing overhead disconnected disconnected for an

systems in which useless 2. Llow communication arbitrary period of
checkpoints are reduced by overhead on wireless channels time without affecting
using probabilistic approach that checkpointing activity.
computes an interacting set of
processes on checkpoint initiation

Table Contd…

NEW PARADIGMS IN CHECK-POINTING TECHNIQUES IN DISTRIBUTED MOBILE SYSTEMS 565

7. S. Negi [23], A Blocking coordinated 1. A solution how to handle 1. If a MH is present in Centralized

2007 checkpointing scheme is mobility is given vicinity of current MSS,
described then checkpoint request

is send directly to MH.

Else current MSS will
broadcast checkpoint

request message to other

MSS
2. Thus all these processes

take checkpoint and sends

information to initiator via
their local MSS

8. Guohui [24], A blocking coordinated 1. Blocking time is reduced 1. Storage overhead Centralized

2005 checkpointing sceheme

which forces only minimum

number of processes to take

checkpoint when a process

initiate checkpoint

9. Biswas [25], Algorithm to save checkpoints 1. They introduced the concept 1. During checkpointing Distributive

2010 based on mobility and movement of migration checkpoint participating MHs are
patterns. Mobile hosts save 2. An MH upon saving migration barred only from

checkpoints when number of checkpoint, sends it attached receiving execution

hand-offs exceed a predefined with migration message to its
handoff threshold value current MSS before

disconnection

Non-Blocking Coordinated Checkpointing

10. Cao & Introduced Mutable checkpoint, 1. Only dependent processes - Distributive

Mukesh which is neither tentative are forced to take checkpoints
Singhal or permanent checkpoint. 2. Storage overhead is reduced

[26], 2001

11. Cao & Chen Algorithm for hybrid 1. Easy to implement - Distributed
[27], 2004 distributed systems 2. No change required for

subsystems

3. No extra workload

12. Bidyut, Produce consistent set of 1. Checkpoint overhead is 1. Channel can loss Distributive

Rahimi checkpoint without overhead reduced messages

and Liu of temporary checkpoints,

[28], 2006 with no useless checkpoint,

non blocking algorithm

13. Bidyut-Rahimi- Directly permanent checkpoint 1. Eliminates the need of taking - Distributive

Ziping Liu without any temporary temporary checkpoint

[29], 2008 checkpoint sin ring network

14. Ch. D. V Concept of Active interval is 1. Easier scheme to determine lost - Distributive

Subha Rao used to handle orphan and and orphan message

and M.M lost message
Naidu [30],

2008

Table 1 Contd…

Table Contd…

566 RUCHI TULI & PARVEEN KUMAR

15. Awadesh A scheme based on independent 1. Recovery of an MH is performed - Distributive

kumar Singh checkpointing, optimistic and independently
[31], 2007 asynchronous message logging 2. Message logging & dependency

is proposed tracking is performed by MSS to

utilize volatile space at MSS

16. Partha Sarathi A scheme uses the concept 1. Number of moves that an 1. Multiple concurrent Distributive

Mandal and of mobile agents to handle agent takes to complete checkpoints are

Krishnendu multiple initiations of checkpointing may be possible

Mukhopadh checkpointing is proposed. very large

yaya [32], DFS tree saved at initiator is

2007 used to find neighbor node that

has been visited by mobile agent.

Communication Induced Checkpointing

17. Qiangfeng Every process can take their 1. Fast response time - Distributive

Jiang and D. local tentative checkpoint and 2. Reduce overhead of checkpints
Manivannan store in local memory

[33], 2007

18. Ajay D Simple tree and hypercube 1. Useful in large distributive - Distributive

Kshemkalyani algorithms that use fewer systems like supercomputers,

algorithm message and have lower MIMD, required less message
[34], 2010 response time and response time

19. Jin Yang, Communication induced or 1. Forced checkpoints maintain 1. Deferred message Distributive
Jiannong forced checkpoints are taken consistent recovery line processing scheme

Cao, Weigang by a process by analyzing allow delaying the

Wu [35], piggybacked information that processing of received
2006 comes with received message message (that can lead to

forced checkpoint) until

mobile agent takes a basic
checkpoint. Thus, forced

checkpoints are avoided but

some messages cannot be
processed immediately

Table 1 Contd…

4. CONCLUSION

We have reviewed and compared different approaches for
failure free execution of a mobile host and to a greater extent
failure free execution of mobile environment. We studied
three checkpointing scheme- independent, coordinated and
communication induced checkpointing and the various
algorithms that have been developed under each of these
scheme. We have also compared different approaches of
checkpointing and compared the salient features of various
snapshot recording algorithms in Table 1. Clearly, the higher
the level of abstraction provided by a communication
model, the simpler the snapshot algorithm. The requirement
of global snapshots finds a large number of applications
like: detection of stable properties, checkpointing,
monitoring, debugging, analyses of distributed
computation, discarding of obsolete information, etc.

REFERENCES

1. Bhargava B. and Lian S.R., “Independent Checkpointing
and Concurrent Rollback for Recovery in Distributed
Systems – An Optimistic Approach,” Proceedings of 17th

IEEE Symposium on Reliable Distributed Systems, pp 3-12,
1988.

2. Storm R., and Temini, S., “Optimistic Recovery in Distributed
Systems”, ACM Trans. Computer Systems, Aug, 1985, pp.
204-226.

3. Weigang Ni, Susan V. Vrbsky and Sibabrata Ray, “Low-
cost Coordinated Checkpointing in Mobile Computing
Systems”, Proceeding of the Eighth IEEE International
Symposium on Computers and Communications, 2003.

4. Chandy K.M. and Lamport L., “Distributed Snapshots:
Determining Global State of Distribited Systems”, ACM
Transaction on Computing Systems, 3 No. 1, pp 63-75,
February, 1985

NEW PARADIGMS IN CHECK-POINTING TECHNIQUES IN DISTRIBUTED MOBILE SYSTEMS 567

5. Koo R. and Tueg S., “Checkpointing and Rollback Recovery
for Distributed Systems”, IEEE Trans. On Software
Engineering”, 13 no. 1, pp 23-31, January 1987.

6. Elonzahy E.N., Alvisi L., Wang Y.M. and Johnson D.B.,
“A Survey of Rollback-Recovery Protocols in Message-
Passing Systems”, ACM Computing Surveys, 34 no. 3, pp
375-408, 2002.

7. Baldoni R., Hélary J-M., Mostefaoui A. and Raynal M.,
“A Communication- Induced Checkpointing Protocol that
Ensures Rollback-Dependency Trackability,” Proceedings
of the International Symposium on Fault-Tolerant-Computing
Systems, pp. 68-77, June 1997.

8. Hélary J. M., Mostefaoui A. and Raynal M.,
“Communication-Induced Determination of Consistent
Snapshots,” Proceedings of the 28th International
Symposium on Fault-Tolerant Computing, pp. 208- 217,
June 1998.

9. Manivannan D. and Singhal M., “Quasi-Synchronous
Checkpointing: Models, Characterization, and Classification,”
IEEE Trans. Parallel and Distributed Systems, 10, no. 7,
pp. 703-713, July 1999.

10. Alvisi, Lorenzo and Marzullo, Keith,” Message Logging:
Pessimistic, Optimistic, Causal, and Optimal”, IEEE
Transactions on Software Engineering, 24, No. 2, February
1998, pp. 149-159.

11. L. Alvisi, Hoppe, B., Marzullo, K., “Nonblocking and
Orphan-Free Message Logging Protocol,” Proc. of 23rd
Fault Tolerant Computing Symp., pp. 145-154, June 1993.

12. L. Alvisi, “Understanding the Message Logging Paradigm
for Masking Process Crashes,” Ph.D. Thesis, Cornell Univ.,
Dept. of Computer Science, Jan. 1996. Available as Technical
Report TR-96-1577.

13. Elnozahy and Zwaenepoel W, “On the Use and
Implementation of Message Logging,” 24th int’l Symp. Fault
Tolerant Computing, pp. 298-307, IEEE Computer Society,
June 1994.

14. D. Johnson, “Distributed System Fault Tolerance Using
Message Logging and Checkpointing,” Ph.D. Thesis, Rice
Univ., Dec. 1989.

15. S. Venketasan and T.Y. Juang, “Efficient Algorithms for
Optimistic Crash recovery”, Distributed Computing, 8, no.
2, pp. 105-114, June 1994.

16. S. Venketasan and T.T.Y. Juang, “Low Overhead Optimistic
Crash Recovery”, Proc. 11th Int.

17. Taesoon Park, Namyoon Woo and Heon Y. Ycom, “An
Efficient Optimistic Message Logging Scheme for
Recoverable Mobile Computing Systems”, IEEE Tran. On
Mobile Computing, 2002.

18. Taesoon Park, Namyoon Woo and Heon Y. Yeom, “An
Efficient Recovery Scheme for Fault Tolerant Mobile
Computing Systems”, FGCS- 19, 2003.

19. Yi-Wei ci, Zhan Zhang, De- Ching Zuo, Zhi- Bowu and
Xiaa-Zong Yang, “Area Difference Based Recovery
Information Placement for Mobile Computing System”, 14th
IEEE international Conference on Parallel and Distributed
Systems, 2008.

20. Sapna E. George, Ing-Ray Chen and Ying Jin “Movement
Based Checkpointing and Logging for Recovery in Mobile
Computing Systems”, ACM, June 2006.

21. Mehdi Lotfi, Seyed Ahmad Motamedi and Mojtaba
Bandarabadi, “Lightweight Blocking Coordinated
Checkpointing for Cluster Computer Systems”, Sym. On
System Theory, 2009.

22. Lalit Kumar P. Kumar “A Synchronous Ckeckpointing
Protocol for Mobile Distributed Systems: Probabilistic
Approach”, Int Journal of Information and Computer
Security, 2007.

23. Suparna Biswas and Sarmistha Neogy, “A Low Overhead
Checkpointing Scheme for Mobile Computing Systems”,
Int. Conf. Advances Computing and Communications, IEEE
2007.

24. Guohui Li and LihChyun Shu “A Low-Latency
Checkpointing Scheme for Mobile Computing Systems”,
Int. Conf. Computer Software and Applications, IEEE, 2005.

25. Biswas, S., & Neogy, S., “A Mobility-Based Checkpointing
Protocol for Mobile Computing System”, International
Journal of Computer Science & Information Technology, 2,
No.1, pp135-151, 2010.

26. G.Cao, M.Singhal, “Mutable Checkpoints: A New
Checkpointing Approach for Mobile Computing Systems”,
IEEE Transactions on Parallel and Distributed System, 12,
Issue 2, Feb., 2001, pages: 157-172, ISSN: 1045-9219.

27. Jiannog Cao, Yifeng Chen, Kang Zhang, Yanixing He:
“Checkpointing In Hybrid Distributed Systems”, Proceedings
of 7th International Symposium of Parallel Architetures,
Algorithms and Network, IEEE, 2004.

28. Bidyut Gupta, Shahram Rahimi, Ziping Liu: “A New High
Performance Checkpointing Approach for Mobile Computing
Systems”, International Journal of Computer Science and
Network Security, 2006.

29. Bidyut Gupta, Shahram Rahimi, and Ziping Liu: “Design of
High Performance Distributed Snapshot/recovery Algorithms
for Ring Network”, Journal of Computing and Information
Technology-CIT, 2008.

30. Ch. D. V Subha Rao and M.M Naidu “A New Efficient
Coordinated Checkpointing Protocol Combined with
Selective Sender based Message Logging”, 2008.

31. Awadhesh Kumar Singh, “On Mobile Checkpointing Using
Index and Time Together”, World Academy of Science,
Engineering and Technology, 2007.

32. Partha Sarathi Mandal and Krishnendu Mukhopadhyaya,
“Mobile Agent Based Checkpointing with Concurrent
Initiations”, International J. of Foundation of Computer
Science, 2007.

33. Qiangfeng Jiang and D. Manivannan: “An Optimistic
Checkpointing and Selective Message Logging Approach
for Consistent Global Checkpoint Collection in Distributed
Systems”, IEEE, 2007.

34. Ajay D Kshemkalyani:, “A Symmetric O(n log n) Message
Distributed Snapshot Algorithm for Large Scale Systems”,
IEEE, 2010.

35. Jin Yang, Jiannong Cao and Weigang Wu, CIC: “An
Integrated Approach to Checkpointing in Mobile Agent
System”, Proceedings of Second International Conference
on Semantics, Knowledge and Grid, 2006.

