International Journal of Information Technology and Knowledge Management

July-December 2011, Volume 4, No. 2, pp. 355-360

THE ROLE OF AUTOMATIC DYNAMIC UPDATE TO IMPROVE AN
OPERATING SYSTEM AVAILABILITY

Rajeev Kr. Sharma?, "Rupak Sharma? & Mr. Shailendra Raj*

Updating software at runtime is a challenge that covers various aspects of software design and runtime systems. Dynamic
update is a mechanism that allows software up dates and patches to be applied without loss of service or down-time. Dynamic
update of an operating system enables administrators to defer rebooting or restarting services and the resultant disruption,
without trading off the ability to apply important security fixes or improve functionality and performance through software
updates. We have considered the problem of building a dynamically updatable operating system, and have designed and
implemented a prototype update mechanism for the K42 research operating system. Although the prototype utilises the
hot-swapping features of K42, many aspects of the design would be relevant for other operating systems also.

K42

K42 is a research operating system currently being
developed to address performance and scalability issues of
system software on large-scale, shared-memory, NUMA
multiprocessor computers. The K42 project is developing a
new scalable open source research operating system
incorporating innovative mechanisms and policies, and
modern programming technologies. It runs on 64-bit cache-
coherent PowerPC systems, and supports the Linux API and
ABI. It uses a modular object-oriented design to achieve
multiprocessor scalability, enhance customisability, and
enable rapid prototyping of experimental features (such as
dynamic update).

Obiject-oriented technology has been used throughout
the system. Each resource (for example, virtual memory
region, network connection, open file, or process) is
managed by a different set of object instances[5]. Each
object encapsulates the meta-data necessary to manage the
resource as well as the locks necessary to manipulate the
meta-data, thus avoiding global locks, data structures, and
policies. The object-oriented nature enables adaptability,
because different resources can be managed by different
implementations. For example, each running process in the
system is represented by an in-kernel instance of the Process
object (analogous to the process control block structure
present in other operating systems). Presently two
implementations of the Process interface exist,
ProcessReplicated, the default, and rocessShared, which is
optimised for the case when a process exists on only a single

[A.P], MCA-Dept, SRM-University, NCR Campus Modinagar-
201204[U.P]India

2Corresponding Author:[A.P], MCA- Dept

3[A.P][CSE-Dept]Radha Govind Engineering College Meerut-
25000[U.P] India

Email: *dcs.rajom@gmail.com, 2rupak sharmamrt @ gmail. com,
Scontact_srtyagi@yahoo.co.in

5 SaLID

CPU [2]. The K42 kernel defaults to creating replicated
processes, but allows for a combination of replicated and
shared processes.

Hot-swapping allows an object instance to be
transparently switched to another implementation while the
system is running, and forms the basis of our dynamic update
implementation.

1. INTRODUCTION

To support on-demand computing, where workloads are
unpredictable, high system availability is crucial.
Unplanned down-time has long been a problem for
computing infrastructure, but in an on-demand environment
the cost even of scheduled down-time is increasingly
prohibitive. For example, Visa’s transaction processing
system is routinely updated as many as 20,000 times per
year,yet tolerates less than 0.5% down-time [15]. Dynamic
update [16] is used to minimise such downtime. It involves
the application of software updates to a running system
without loss of service. Whereas the normal process for
applying an update might be to install an updated version
of a program and then restart that program, losing service
while the restart takes place, in a dynamically updatable
System the new code is loaded into the running program
without the need to restart.

A stable and reliable operating system has been
important for high-availability computing systems, however
modern operating systems are subject to a constant stream
of updates and patches. These updates are issued to fix bugs,
correct security holes, improve performance, or add features,
and they require either restarting system services, or worse,
rebooting the entire machine, to take effect. Although these
restarts can be planned for and scheduled, it forces
administrators to trade off the cost of down-time against the
risk of remaining vulnerable to a known security flaw.

P D F To remove this message, purchase the
product at www.SolidDocuments.com


mailto:rajom@gmail.com
mailto:3contact_srtyagi@yahoo.co.inK42

356

A solution to these problems is to make the operating
system dynamically updatable, enabling patches to be
applied to the running code, and improving the system’s
availability. We have examined a number of issues involved
in designing a dynamically updatable operating system,
and implemented a prototype within the K42 operating
system.

2. DEsIGNING A DYNAMICALLY UPDATABLE
OPERATING SYSTEM

In order to design an operating system that can be
dynamically updated a number of issues that affect the
application of dynamic update techniques to an operating
system need to be addressed.

An operating system places special constraints upon a
dynamic update implementation, because it plays a crucial
role in maintaining the security and integrity of a system,
and the update mechanism must be designed with this in
mind. Additionally, the basic performance and scalability
of the system should not be affected.

To update a system, we must identify the fundamental
updatable unit of the system. In an operating system these
units may be procedures, modules, subsystems, servers, or
some other abstraction. The structure of the system dictates
what is feasible, for example in a monolithic kernel it might
be sensible to perform an update at the procedure or kernel
module boundary, whereas in a microkernel-based system
one could choose to dynamically update user-level server
processes. Having identified the updatable unit, a dynamic
updating system has to deal with fundamentally the same
issues. These are:

1. Performing the update at a safe point: in the same
way that concurrent systems suffer from race
conditions, if a dynamic update is performed in a
critical period the system could fail. For example,
while the system’s state is being modified, an
update should not occur. It is therefore important
to determine when an update may safely be applied,
however since this is, in general, undecidable [10],
system support is required. Common solutions
involve requiring the system to be programmed
with update points, or detecting when the relevant
part of the system is idle, or quiescent. An operating
system is fundamentally event-driven, responding
to application requests and hardware events, unlike
most applications, which are structured as one or
more threads of execution.Because it is event-
driven, an operating system often enters quiescent
points then no events are being handled, which
can be used to avoid relying on preprogrammed
update points.

2. Transferring state information: unless the unit
of the system being updated maintains no state,

5 SaLID

Rajeev KR. SHARMA, Rupak SHARMA & SHAILENDRA RAJ

there must be a mechanism for transferring this state
information, so that the updated unit can continue
transparently from the unit it replaced. Furthermore,
if the replacement unit stores its state in a different
structure, there must be a mechanism for
transforming the state information to the new
structure.

3. Redirecting invocations: after the new unit has
been installed and the state information transferred,
the system must ensure that all future invocations
are serviced by the new unit rather than its
predecessor.

Limitations of the Update System

Ideally any released update could be dynamically applied,
that is, any change that can be made to be source code for a
system should be supported by our mechanism. However,
there are many problems in structuring arbitary.

Important questions to answer are:

1. What can be changed by an update? There is an
important trade off between the complexity and
flexibility of a dynamic update system, when
choosing what kinds of update can be supported.
It is simpler to support only changing code, but
not data structures. It is also simpler to keep the
interfaces to modules fixed, and to only allow
changing the code behind an interface.

These questions directly affect the kind of system
changes that can be packaged as a dynamic update,
and the complexity of the dynamic update
system.For example, if module interfaces can be
changed by an update, either the entire update must
be applied atomically, or the system must be able
to cope with multiple versions of interfaces existing
concurrently.

2. How critical is the timeliness of an update? For
some updates, such as security fixes, it is important
to know when an update has completed, and to be
able to guarantee that an update will complete
within a certain time frame. For other updates, such
as performance enhancements that do not affect
correctness, timeliness may be less of a concern.
These differing requirements are one of the key
factors to consider in an operating system. It may
be that different approaches are required for
different updates, in the case of security updates
they must be applied either immediately or lazily
when the relevant service is accessed, whereas in
other situations they could be applied by a
background task. Lazy or background application
of updates minimises the performance perturbation
experienced during update, but raises other issues

P D F To remove this message, purchase the
product at www.SolidDocuments.com



THE RoLE oF AutomaTic Dynamic UpPpDATE TO IMPROVE AN OPERATING SYSTEM AVAILABILITY

in change management, and the ability to know
what code is actually executing on the machine.

3. Are updates to middleware or system libraries
supported? Increasingly, important functionality
isimplemented in middleware and system libraries,
both of which are also the target of updates and
patches. Dynamically updating these involves
performing an update in the address space of each
running process, which implies an additional level
of complexity between the operating system and
the applications. However, without such a feature,
updates which change or extend the interface to
the operating system are not useful until each
application is restarted.

4. Are updates trustworthy? Because a misbehaved
or malicious update could easily compromise the
security and integrity of the system, some
mechanism should be used to ensure that only
trusted updates can be loaded. Classic approaches
here include trusted administrators, and code
signing. Alternatively, if the system (and its
updates) are coded in a type-safe language, proof-
carrying code can be used to verify the safety of
updates [12], however re-implementing an
operating system in such a language is very
difficult.

3. Dynamic UpbaTE IN K42

K42 is an experimental operating system being developed
at IBM Research. It is designed to be highly scalable, and
features a modular, object-oriented structure, to support
rapid prototyping of experimental features (such as dynamic
update).

Object orientation is pervasive in K42’s impl-
ementation—each resource or entity is managed by an object
instance [4]. For example, there is an instance of the Process
object in the kernel for each process in the system (this is
analogous to the process control block present in other
operating systems). There are presently two implemen-
tations of the process object interface, Process Replicated,
the default, and ProcessShared, which is optimised for the
case when a process is present on a single CPU [1]. A running
K42 system could have a combination of replicated and
shared process objects present.

To support adaptability, K42 includes hot-swappable
objects. Hot-swapping allows an object’s implementation
to be transparently changed while the system is running.

It works by temporarily suspending incoming calls to
an object, detecting when the object is quiescent,
transferring state to the replacement object, updating a
global reference so that future invocations use the new
object, and then forwarding the suspended calls to the new
object [3]. To date, this mechanism has been used only to

5 SaLID

357

support reconfiguration and adaptation on a per-object or
per-resource basis [2, 17], however as we will show it canalso
be used to support dynamic update.

Dynamic Update

A good choice for the dynamically updatable unit in K42 is
the same as for hot-swapping: the object instance. Hot-
swapping transparently changes the implementation of a
specific object instance. To extend hot-swapping to
dynamic update, the infrastructure must be able to both
locate and hot-swap all instances of an object, and direct
any new instantiations to the updated object. To track object
instances and control object instantiations required a
change in K42’s programming model. Previously, object
instances were tracked in a class-specific manner, and
objects were usually created through calls to statically
bound Create methods.

To create an instance of the ProcessReplicated object
(the implementation used by default for Process objects),
the call used was: static SysStatus Create(ProcessRef &,
HATRef, PMRef, ProcessRef, char *);

This leads to problems for dynamic update, because
the Create call is bound at compile-time, and cannot easily
be redirected to an updated implementation of the
ProcessReplicated object, and also because we rely on the
caller of this method to track the newly created instance.

To address these problems factory objects [8] were
added to K42. The responsibility for creating and tracking
objects is now placed with the factory for that class, and the
class has a static member that references the default factory.
The majority of these implementation details are hidden
behind class inheritance and preprocessor macros. It is
worthwhile to note that performance and scalability
influenced our implementation of the factories. For example,
object instances are tracked for dynamic update in a
distributed fashion using per-CPU instance lists.
Nev-ertheless, there is work to be done in benchmarking
and optimising our implementation.

We used the factories to implement dynamic update in
K42. To perform a dynamic update of a class, the following
steps are taken:

1. A factory for the updated class is instantiated.

2. The old factory object is hot-swapped to the new
factory object, during this process the new factory
receives the list of instances that was being
maintained by the old factory.

3. Once the hot-swap has completed, all new object
instantiations are being handled by the new
updated factory, and therefore go to the updated
class.

P D F To remove this message, purchase the
product at www.SolidDocuments.com



358

4. To update the old instances, the new factory
traverses the list it received from the old factory,
creating a new object instance and performing a
hot-swap between the old and the new instances.
This step proceeds in parallel across all CPUs where
the old factory was in use.

5. Finally, the update is complete and the old factory
is destroyed.

We found that adding factories to K42 was a natural
extension of the object model, and led to other advantages
besides dynamic update. As an example, in order to choose
between ProcessReplicated and ProcessShared, K42 had
been using a configuration flag that was consulted by the
code that creates process objects to determine which
implementation to use. Using the factory model, we could
remove this flag and allow the scheme to support an arbitrary
number of implementations, by changing the default process
factory reference to the appropriate factory object.

Initial Experiments

To test and validate our prototype implementation, we
constructed an updated version of the ProcessReplicated
class, named ProcessReplicatedV2. This class inherits from,
and is functionally equivalent to, ProcessReplicated, aside
from some minor changes to allow us to detect which version
is being used. We then performed a dynamic update,
replacing all instances of ProcessReplicated with
ProcessReplicatedV2 objects, while the operating system
was running its regular set of regression tests, which involves
the creation and destruction of a large number of processes.

4. Future WoORK

This prototype suffers from several limitations. Due to a
limitation of the current hot-swapping implementation, and
because we only swap a single object at a time, we cannot
dynamically apply updates that require changes to object
interfaces, nor can we update code that isn’t part of a hot-
swappable object such as low-level kernel code.

We could potentially extend the design of hot-
swapping to support changing object interfaces—this would
require atomically hot-swapping multiple objects,
including the object whose interface is to be changed and
all objects possibly using that interface. We have not yet
fully considered the requirements of such a feature, nor its
eradications for our quiescence detection algorithm. The
severity of the the limitation to only update hot-swappable
objects also remains to be seen.

State transfer between the old and new versions of an
object is performed by the hot-swap mechanism using state
transfer methods: the old object provides a method to export
its state in a standard format, which can be read by the new

5 SaLID

Rajeev KR. SHARMA, Rupak SHARMA & SHAILENDRA RAJ

object’s import method. This works well enough, but it
requires the tedious implementation of the transfer code,
even though most updates only make minor changes, if
any, to the instance data (for example, adding a new data
member). It should be possible to automate the creation of
state transfer methods in such cases, it as has been done in
other dynamic update systems [12, 14].

In our initial experiment, the code for Process
ReplicatedVv2 was compiled into the kernel ready for use
by the update. Clearly this is inadequate for a proper system,
however it was sufficient to verify the prototype. We are
presently working on a mechanism to load the updated
object code into a running kernel or system server, based
on a simplified version of the scheme used for loadable
modules in the Linux kernel [5].

We need a mechanism to automate the preparation of
updates from source code modifications. This could possibly
be driven by make, using a rebuild of the system and a
comparison of changed object files to determine what must
be updated. However, it would be extremely difficult, if not
impossible, to build a completely generic update
preparation tool, because changes to the source code of an
operating system can have far-reaching and unpredictable
consequences.

Our update system does not yet support updates to
system libraries or middleware. At present it is possible to
perform an update in an application’s address space, however
there is no central service to apply an update to all processes
which require it. We intend to develop operating system
support for dynamically updating libraries in a coordinated
fashion.

Applicability to Other Operating Systems

This work relies on several features of K42, the
objectoriented nature, and the hot-swapping mechanism,
however we anticipate that it could be applied to other
systems using similar techniques. As long as the system has
a modular structure, and uses a unified mechanism for
invoking modules (which allows interposition and
hot-swapping), it should be possible to add a factory
mechanism and perform dynamic updates.

As an example, if adding dynamic update to a system
such as Linux, which is structured with kernel modules,
one could choose to add a factory-like concept to the
module interface, making modules responsible for tracking
any “instances” of state that they create. The advantage
that K42 offers over mainstream systems such as Linux when
it comes to dynamic update is that the system is already
decomposed into finer-grained updatable units,and that a
larger portion of the system can be updated (in Linux, much
core kernel functionality is not modularised).

P D F To remove this message, purchase the
product at www.SolidDocuments.com



THE RoLE oF AutomaTic Dynamic UpPpDATE TO IMPROVE AN OPERATING SYSTEM AVAILABILITY

5. RELATED WORK

Many systems for dynamic updating have been designed,
and a comprehensive overview of the field is given by Segal
and Frieder [16]. These existing systems are generally either
domain-specic [7, 11], or rely on specialised programming
languages [12, 14], making them unsuitable for use in an
operating system implemented in C or C++.

Dynamic C++ classes [13] may be applicable to an
updatable operating system. In this work, automatically
generated proxy classes are used to allow the update of
code in a running system. However, when an update occurs
it only affects new object instantiations, there is no support
for updating existing object instances, which is important
in situations such as security fixes. Our system also updates
existing instances, using the hot-swapping mechanism to
transfer their data to a new object.

Commercial operating systems commonly offer features
such as Solaris’” Live Upgrade [18], which allows changes
to be made and tested without affecting the running system.
However, a reboot is required for any changes to take effect.

Component- and microkernel-based operating systems,
where services may be updated and restarted without a
reboot, also offer improved availability. However, while a
service is being restarted it is unavailable to clients, unlike
our system where requests can continue to be handled.
Going a step further, DAS [9] supported dynamic update
through special kernel primitives, although the kernel was
itself not updatable. It remains to be seen precisely which
classes of updates can be supported by our system, but as
we have demonstrated, there is no restriction on updating
the kernel.

Dunagan et al. have developed an online analyser [6],
which continually traces accesses made by applications to
files (and the Windows registry) in order to produce library
dependency information. This simplfies the testing of
patches, since it is possible to determine in advance which
applications might be affected. Online analysis might be
useful in our system for determining which objects are
affected by an update, however in a development
environment where full source code is available, it is most
likely cheaper and simpler to track such dependencies
statically using the source code.

6. CoNCLUSION

As dynamic update is a mechanism that allows software up
dates and patches to be applied without loss of service or
down-time. Here our goal is to improve the availability of
operating systems through dynamic updating. We have
presented our prototype of a dynamically updatable
operating system based on K42, and discussed the issues
encountered in its design that are generally applicable to
operating systems. This paper has raised more questions

5 SaLID

359

than it has answered, and there is much research to be done,
however we have provided a framework and a prototype for
performing that research. We are continuing to develop our
implementation, and are using it to explore some of the
research issues that we have raised.

REFERENCES

[1] Jonathan Appavoo, Marc Auslander, Dilma Da Silva, Orran
Krieger, Michal Ostrowski, Bryan Rosenburg, Robert
W. Wisniewski, Jimi Xenidis, Michael Stumm, Ben Gamsa,
Reza Azimi, Raymond Fingas, Adrian Tam, and David Tam.
“Enabling Scalable Performance for General Purpose
Workloads On Shared Memory Multiprocessors”.

[2] Jonathan Appavoo, Kevin Hui, Craig A. N. Soules, Robert
W. Wisniewski, Dilma Da Silva, Orran Krieger, Marc
Auslander, David Edelsohn, Ben Gamsa, Gregory R. Ganger,
Paul McKenney, Michal Ostrowski, Bryan Rosenburg,
Michael Stumm, and Jimi Xenidis. “Enabling Autonomic
System Software with Hot-Swapping”, IBM Systems
Journal, 42(1):60-76, 2003.

[3] Jonathan Appavoo, Kevin Hui, Michael Stumm, Robert
W. Wisniewski, Dilma Da Silva, Orran Krieger, and Craig
A. N. Soules. “An Infrastruc-ture For Multiprocessor Run-
Time Adaptation.” In Proceedings of the ACM SIGSOFT
Workshop on SelfHealing Systems, pages 3-8, Charleston,
SC, USA, November 2002.

[4] Marc Auslander, Hubertus Franke, Ben Gamsa, Orran
Krieger, and Michael Stumm, “Customization lite”, In
Proceedings of the 6th Workshop on Hot Topicsin Operating
Systems (HotOS), May 1997.

[5] Daniel P. Bovet and Marco Cesati, Understanding the Linux
Kernel. O’Reilly, 2nd edition, 2002.

[6] John Dunagan, Roussi Roussev, Brad Daniels, Aaron
Johnson, Chad Verbowski, and Yi-Min Wang. “Towards a
self-managing software patching process using black-box
persistent-state manifests”, In Proceedings of the |IEEE
International Conference on Autonomic Computing (ICAC),
May 2004. Also as Microsoft Research Technical Report
MSR-TR-2004-23.

[71 R.S. Fabry, “How to Design a System in Which Modules
Can be Changed on the Fly”. In Proceedings of the 2nd
ICSE, pages 470-476, San Francisco, CA, USA, 1976.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns. Addison-Wesley,1995.

[9] Hannes Goullon, Rainer Isle, and Klaus-Peter Léhr.
“Dynamic Restructuring in an Experimental Operating
System”, In Proceedings of the 3rd ICSE, pages 295-304,
Atlanta, GA, USA, 1978.

Deepak Gupta, Pankaj Jalote, and Gautam Barua. “A Formal
Framework For On-line Software Version Change”, |IEEE
Transactions on Software Engineering, 22(2):120-131,
February 1996.

Steffen Hauptmann and Josef Wasel, “On-line Maintenance
with on-the-Fly Software Replacement”, In Proceedings of
the 3rd International Conference on Configurable
Distributed Systems, pages 70-80, Annapolis, MD, USA,
May 1996. IEEE Computer Society Press.

[10]

[11]

P D F To remove this message, purchase the
product at www.SolidDocuments.com



360

[12]

[13]

[14]

[15]

RaJeev KR. SHARMA, Rupak SHARMA & SHAILENDRA RAJ

Michael Hicks, Jonathan T. Moore, and Scott Nettles.
“Dynamic software updating”, In Proceed ings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 13-23. ACM, June 2001.
Gisli Hjalmtysson and Robert Gray, “Dynamic C++
Classes—a Lightweight Mechanism to Update Code in a
Running Program” In Proceedings of the 1998 USENIX
Technical Conference, pages 65-76, June 1998.

Insup Lee.DYMOS: A Dynamic Modification System. PhD
thesis, University of Wisconsin, Madison,1983.

David Pescovitz Monsters in a box Wired,8(12):341-347,
December 2000.

[16]

[17]

[18]

Mark E. Segal and Ophir Frieder, On-the-fly program
modification: “Systems For Dynamic Updating”, |EEE
Software, 10(2):53-65, March 1993.

Craig A. N. Soules, Jonathan Appavoo, Kevin Hui, Robert
W. Wisniewski, Dilma Da Silva, Gregory R.Ganger, Orran
Krieger, Michael Stumm, Marc Auslander, Michal
Ostrowski, Bryan Rosenburg, and Jimi Xenidis. “System
support for online reconfiguration”. In Proceedings of the
2003 USENIX Technical Conference, pages 141-154, San
Antonio, TX, USA, 2003.

Sun Microsystems Inc. “Solaris Live Upgrade 2.0 Guide”,
October 2001. Available from http://wwws. sun.com/
software/solaris/liveupgrade/.

. . s To remove this message, purchase the
SOLID CONVERTER PDF > s nesas s te


http://wwws



