
International Journal of Information Technology and Knowledge Management (ISSN: 0973-4414) 
July-December 2012, Volume 5, No. 2, pp. 493-496 
 

Novel approach for Software Inspection 
Dinesh Kumar, Vijay Kumar 

M.Tech. student, Department of Computer Science, Rajasthan Technical University, Kota 
Research Scholar, Singhania University, Rajasthan, India 
dinesh_matwa@yahoo.co.in, vijay_matwa@yahoo.com 

 
 
ABSTRACT: Michael Fagan introduced the software inspection process in the early 1970s. The Fagan 
inspection method, a formalization of review process is based on the application of process management 
techniques to software development. In this paper we discuss techniques based on strongest post-condition 
predicates transformer (sp). We identify problems with other formal approaches for deriving semantics to 
support reasoning .We have described verification methods based on the derived semantics forms and conjecture 
that because the need to provide inference rules for language constructs has been removed, these techniques may 
be more amenable to automated and semi automated theorem proving than traditional approaches. 
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INTRODUCTION 
First practicable attempts in capturing mathematically the behavior of a computer program has been made by 
E.W Dijkstra in his famous work A discipline of programming. He formally defines syntax and semantics of his 
model programming language, the Guarded Command Language. One of the major benefits of his approach was 
that he could deal effectively with the problem of non-termination within his program semantics. 
The meaning (or semantics) for each construct of his Guarded Command Language is given in terms of the 
weakest precondition to establish an arbitrary chosen post-condition Q. The degree of weakness is defined by 
the set of program states which a condition encompasses. A condition is considered to be weaker if it is satisfied 
by more program states. 
Construct of the Guarded Command Language 
wp(skip,Q)=df Q 
The command that doesn’t change the program state is called skip. It always terminates and its weakest 
precondition is trivially equivalent to the post-condition Q. 
wp(abort,Q)=df Q 
The command that never ensures termination is called abort. It can generally lead to any behaviour but 
moreover, just refuse to terminate. In conclusion, It could never be guaranteed to establish any such Q we may 
ask for. Hence, its weakest precondition can never be satisfied by any program state. 
wp(x : = E, Q) = df Q<x\E> 
The sequential composition command captures the idea of executing two commands in sequential order. The 
weakest precondition for the command sequence S; T to establish a post-condition Q is the weakest precondition 
for S to establish wp(T,Q), the weakest precondition for T to establish Q. For more we can refer A discipline of 
programming. 
 
The Strongest Post-condition Predicate Transformer 
In order to verify a program we must show that it satisfies its specification and terminates. That is, we must 
show that a program. S, executed under some precondition Q terminates and satisfies a post-condition R. A 
program may be verified by either forward or backward reasoning by applying predicate transformers to the 
specifications and program [80]. 
Weakest Preconditions : The weakest precondition predicate transformer, wp(S,R), provides the weakest 
definition of the set of all initial states under which the program S can execute and terminate and guarantee that 
some post-condition R will hold. It is used in the “backwards reasoning” approach to program verification by 
showing that where we have {Q}S{R}, Q ) wp(S,R). Dijkstra [2] provides rules for calculating the weakest 
precondition of a program constructed from assignment, selection and iteration constructs. Traditionally, 
weakest precondition calculations have provided a strong basis for the derivation of programs from a 
specification using a process of stepwise refinement, and have also been used as a basis for formal proof. 
Strongest Post-conditions: The strongest post-condition transformer, sp(Q, S), gives the strongest assertion R 
that holds given that S executes and terminates under a precondition satisfying Q. Strongest post-conditions, 
therefore, specify the strongest assertions that hold at each point in the execution of the program S. A program 
satisfies it’s specification when sp(Q, S) ) R. Dijkstra [2] provides rules for computing the strongest post-
condition for a program consisting of assignment, selection and iteration2 constructs. This thesis redefines and 
uses these rules as a basis for paraphrasing code in terms of a complete, unambiguous first-order specification of 
its semantics. 
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Strongest Post-condition for Assignment 
Dijkstra [2] defines the strongest post-condition for assignment as: 
 
1. sp(Q, x := E) � (x = E)  � �x (Q), and 
2. sp(Q, x := E(x)) � Q[ (x)/x] 
The first definition, used when x is assigned an expression which is not a function of x, makes direct calculation 
difficult due to the term �x (Q) only indicating that x is bound by Q Pan [5]. The second definition may make 
calculation impossible in many situations as the inverse function may not be defined or may be difficult to 
capture (x := 3 - 4  +2) 
Pan [5] suggested the introduction of fresh variables to the problem in order to remove the requirement to 
calculate inverse functions, by effectively removing any assignments of the second form. This approach 
highlights quality defects in code by identifying situations where a single variable is used for more than one 
purpose. By Pan’s approach, introducing the new variable t, the calculation 
sp(x = X, x := 3 - 4  +2) becomes 
sp ((x = X) [t/x], x := (3 - 4  +2)[t/x]) �  sp(t = X, x := (3 - 4  +2)) � (t = X � x = 3 - 4  +2) 
This allows us to describe the semantics of the assignment statement at the cost of introducing variables that are 
not part of the original program variable set, and which can not be removed without applying the inverse 
function that we are trying to avoid. Because it is the aim of this thesis to present a semantic description of a unit 
of code to be used to assist in the inspection of the code, we feel it may be confusing to introduce variables 
where-ever a self-assignment is made. To this end, we provide an alternate definition of the strongest post-
condition for assignment which is equivalent to the two calculations defined by Dijkstra. This definition 
removes the necessity to calculate inverse functions, is repeatable, and does not rely on the introduction of new 
variables to the problem. 
 
The Modified Strongest Post-condition Calculation 
We start with the conjecture that in any program written in an imperative language that allows self-assignment, 
a variable must have been initialised with a value before being used on the right hand side of an assignment. If a 
variable has not been initialised, prior to it being used on the right hand side of an assignment, then we can say 
that the assignment in question is non-deterministic. 
For example, if we consider the assignment x: = x2 under the precondition true, we can make no reasonable 
guess at what x might be in the post-condition. The value of x is determined either by the value that happens to 
be stored at the particular memory location allocated for x, or the language default for variables of the type of x. 
We denote this non-determinable state of x by x0. The definition for the strongest post-condition for assignment 
provided here uses the conjecture that all variables must be initialized with a value, either explicitly by the 
program or implicitly by the environment, prior to their use in an expression. 
 
Algorithm 1 sp for assignment 
Consider the assignment x := E, under some precondition Q where x is a variable, E is a term, and Q is a 
formula of the form Q1 V ... V Qn where the sub formulas Q1, . . . ,Qn contain no disjuncts. 
sp(Q, x := E) = sp(Q1, x := E) V .. V sp(Qn, x := E), where for all i � [1..n], 
sp (Qi, x := E) is defined as: 
1. If an xC-equality occurs in Qi, let the constant symbol occurring in the leftmost xC-equality of Qi be D, then 
sp(Qi, x := E) = Qi[D/x] � x =E[D/x]. 
2. If an xC-equality does not occur in Qi, and an xv-equality occurs in Qi, let the non-x variable occurring in the 
leftmost xv-equality of Qi be w, then sp(Qi, x := E) = Qi[w/x] � x = E[w/x]. 
3. If an xC-equality does not occur in Qi, and an xv-equality does not occur in Qi, and an xf-equality occurs in 
Qi, let the non-x term occurring in the leftmost xf-equality of Qi be u, then sp(Qi, x := E) = Qi[u/x] � x = 
E[u/x]. 
4. Otherwise, x is not defined in the scope of the assignment prior to use, and sp(Qi, x := E) = Qi [x0/x] � x = 
E[x0/x].  
Within a program we may establish a number of equalities between a variable and other variables, constants or 
functions of constants or variables. In order to make the strongest post-condition calculation deterministic, we 
distinguish between the following types of variable equalities: 
Definition 1. xC-equality 
An xC equality is any atom of the form x = C or C = x where x is a variable and C is a constant symbol. 
Definition 2. xv-equality 
An xv equality is any atom of the form x = v or v = x where x and v are variables. 
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Definition 3. xf-equality 
An xf equality is any atom of the form x = f(t1, t2, ..., tn) or f(t1, t2, ..., tn) = x where x is a variable and f is an 
n-ary function symbol and t1, t2, ..., tn are terms. 
The new sp calculation for assignment is described by Algorithm (1). 
Example Calculating sp for assignment 
(i)  sp(x = a � z = y * x, x := y) 
� (x = a � z = y * x)[a/x] � x = y[a/x] 
� (a = a � z = y * a) � x = y 
�z = y * a � x = y 
(ii)  sp (x = X, x := 3 - 4  +2) 
 � (x = X)[X/x] � x = (3 - 4  +2)[X/x] 
 � (X = X) � x = (3 - 4  +2)  
 � x = (3 - 4  +2) 
As a side effect of the calculation process we may achieve automatic recognition of defects that relate to the use 
of an unutilized variable. If the result of the sp calculation involves any references to v0 for a variable v then v 
has been used prior to being initialized in the scope of the program segment being analyzed. 
There are a number of reasons why this may occur: 
• If v is declared locally, within the scope of the program segment being analyzed, then v0 indicates that v has 
not been initialized prior to use. 
This is a defect that affects portability, maintainability and reusability. 
• If v is not declared locally then v0 indicates that v may be either a global variable, or a class variable (in OO 
programs). 
The identification and reporting of such semantics is useful to assist code readers in identifying defects related 
to variable initialization. 
It should be noted that due to the treatment given to sub-programs in chapter 8, the precondition prior to the 
execution of the body of a procedure or function includes an xv-equality of the form v = v? for all formal 
parameters v. This ensures that formal parameters are not considered uninitialized. 
Lemma For a simple assignment of the form x: = ax + b under some precondition Q, where x is a variable, and 

a and b are constants (a � 0), sp(Q, x := ax + b) = Q[(  )/x]. 
Proof  For the assignment x: = ax + b to occur correctly in an imperative program, Q must be of the form (x = 
t) � P, where t is a term, otherwise x is uninitialised prior to its use in the assignment, and the assignment itself 
is defective. 
LHS  = sp(Q, x := ax + b) 

= sp((x = t) � P, x := ax + b) 
= ((x = t) � P)[t/x] � x = (ax + b)[t/x] 
= ((t = t) � P[t/x]) � x = (at + b) 
� P[t/x]) � x = (at + b) 

RHS  = Q[(  )/x] 

= ((x = t) � P) [(  )/x]. 

= (((  ) = t) � P[(  )/x]) 

= (((  ) = t) � P[t/x]) 
=(x = at + b) � P[t/x] 
� P[t/x] � (x = at + b) 
� LHS 

 
Conclusion 
In this paper we discuss definitions for the strongest post-condition semantics of imperative programming 
language constructs. 
This paper makes contribution in that it describes an algorithm for constructing the strongest post-condition 
specification from an assignment statement, without relying on the calculation of inverse functions or on the 
introduction of new variables to the problem, as is the case with previous definitions. We also discuss the 
problems with existing definitions of strongest post-condition for iterative constructs and procedure calls.  
This paper also introduces a notational aid called the iterative-form notation. This notation is the foundation for 
the future work in which we present an operational definition for calculating an iterative-form invariant for 
iterative program constructs. 
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