
International Journal of Information Technology and Knowledge Management (ISSN: 0973-4414)
July-December 2012, Volume 5, No. 2, pp. 493-496

Novel approach for Software Inspection
Dinesh Kumar, Vijay Kumar

M.Tech. student, Department of Computer Science, Rajasthan Technical University, Kota
Research Scholar, Singhania University, Rajasthan, India
dinesh_matwa@yahoo.co.in, vijay_matwa@yahoo.com

ABSTRACT: Michael Fagan introduced the software inspection process in the early 1970s. The Fagan
inspection method, a formalization of review process is based on the application of process management
techniques to software development. In this paper we discuss techniques based on strongest post-condition
predicates transformer (sp). We identify problems with other formal approaches for deriving semantics to
support reasoning .We have described verification methods based on the derived semantics forms and conjecture
that because the need to provide inference rules for language constructs has been removed, these techniques may
be more amenable to automated and semi automated theorem proving than traditional approaches.
KEYWORDS: Software inspection, Guarded Command Language, Strongest Post-condition

INTRODUCTION
First practicable attempts in capturing mathematically the behavior of a computer program has been made by
E.W Dijkstra in his famous work A discipline of programming. He formally defines syntax and semantics of his
model programming language, the Guarded Command Language. One of the major benefits of his approach was
that he could deal effectively with the problem of non-termination within his program semantics.
The meaning (or semantics) for each construct of his Guarded Command Language is given in terms of the
weakest precondition to establish an arbitrary chosen post-condition Q. The degree of weakness is defined by
the set of program states which a condition encompasses. A condition is considered to be weaker if it is satisfied
by more program states.
Construct of the Guarded Command Language
wp(skip,Q)=df Q
The command that doesn’t change the program state is called skip. It always terminates and its weakest
precondition is trivially equivalent to the post-condition Q.
wp(abort,Q)=df Q
The command that never ensures termination is called abort. It can generally lead to any behaviour but
moreover, just refuse to terminate. In conclusion, It could never be guaranteed to establish any such Q we may
ask for. Hence, its weakest precondition can never be satisfied by any program state.
wp(x : = E, Q) = df Q<x\E>
The sequential composition command captures the idea of executing two commands in sequential order. The
weakest precondition for the command sequence S; T to establish a post-condition Q is the weakest precondition
for S to establish wp(T,Q), the weakest precondition for T to establish Q. For more we can refer A discipline of
programming.

The Strongest Post-condition Predicate Transformer
In order to verify a program we must show that it satisfies its specification and terminates. That is, we must
show that a program. S, executed under some precondition Q terminates and satisfies a post-condition R. A
program may be verified by either forward or backward reasoning by applying predicate transformers to the
specifications and program [80].
Weakest Preconditions : The weakest precondition predicate transformer, wp(S,R), provides the weakest
definition of the set of all initial states under which the program S can execute and terminate and guarantee that
some post-condition R will hold. It is used in the “backwards reasoning” approach to program verification by
showing that where we have {Q}S{R}, Q) wp(S,R). Dijkstra [2] provides rules for calculating the weakest
precondition of a program constructed from assignment, selection and iteration constructs. Traditionally,
weakest precondition calculations have provided a strong basis for the derivation of programs from a
specification using a process of stepwise refinement, and have also been used as a basis for formal proof.
Strongest Post-conditions: The strongest post-condition transformer, sp(Q, S), gives the strongest assertion R
that holds given that S executes and terminates under a precondition satisfying Q. Strongest post-conditions,
therefore, specify the strongest assertions that hold at each point in the execution of the program S. A program
satisfies it’s specification when sp(Q, S)) R. Dijkstra [2] provides rules for computing the strongest post-
condition for a program consisting of assignment, selection and iteration2 constructs. This thesis redefines and
uses these rules as a basis for paraphrasing code in terms of a complete, unambiguous first-order specification of
its semantics.

International Journal of Information Technology and Knowledge Management (ISSN: 0973-4414)
July-December 2012, Volume 5, No. 2, pp. 493-496

Strongest Post-condition for Assignment
Dijkstra [2] defines the strongest post-condition for assignment as:

1. sp(Q, x := E) � (x = E) � �x (Q), and
2. sp(Q, x := E(x)) � Q[(x)/x]
The first definition, used when x is assigned an expression which is not a function of x, makes direct calculation
difficult due to the term �x (Q) only indicating that x is bound by Q Pan [5]. The second definition may make
calculation impossible in many situations as the inverse function may not be defined or may be difficult to
capture (x := 3 - 4 +2)
Pan [5] suggested the introduction of fresh variables to the problem in order to remove the requirement to
calculate inverse functions, by effectively removing any assignments of the second form. This approach
highlights quality defects in code by identifying situations where a single variable is used for more than one
purpose. By Pan’s approach, introducing the new variable t, the calculation
sp(x = X, x := 3 - 4 +2) becomes
sp ((x = X) [t/x], x := (3 - 4 +2)[t/x]) � sp(t = X, x := (3 - 4 +2)) � (t = X � x = 3 - 4 +2)
This allows us to describe the semantics of the assignment statement at the cost of introducing variables that are
not part of the original program variable set, and which can not be removed without applying the inverse
function that we are trying to avoid. Because it is the aim of this thesis to present a semantic description of a unit
of code to be used to assist in the inspection of the code, we feel it may be confusing to introduce variables
where-ever a self-assignment is made. To this end, we provide an alternate definition of the strongest post-
condition for assignment which is equivalent to the two calculations defined by Dijkstra. This definition
removes the necessity to calculate inverse functions, is repeatable, and does not rely on the introduction of new
variables to the problem.

The Modified Strongest Post-condition Calculation
We start with the conjecture that in any program written in an imperative language that allows self-assignment,
a variable must have been initialised with a value before being used on the right hand side of an assignment. If a
variable has not been initialised, prior to it being used on the right hand side of an assignment, then we can say
that the assignment in question is non-deterministic.
For example, if we consider the assignment x: = x2 under the precondition true, we can make no reasonable
guess at what x might be in the post-condition. The value of x is determined either by the value that happens to
be stored at the particular memory location allocated for x, or the language default for variables of the type of x.
We denote this non-determinable state of x by x0. The definition for the strongest post-condition for assignment
provided here uses the conjecture that all variables must be initialized with a value, either explicitly by the
program or implicitly by the environment, prior to their use in an expression.

Algorithm 1 sp for assignment
Consider the assignment x := E, under some precondition Q where x is a variable, E is a term, and Q is a
formula of the form Q1 V ... V Qn where the sub formulas Q1, . . . ,Qn contain no disjuncts.
sp(Q, x := E) = sp(Q1, x := E) V .. V sp(Qn, x := E), where for all i � [1..n],
sp (Qi, x := E) is defined as:
1. If an xC-equality occurs in Qi, let the constant symbol occurring in the leftmost xC-equality of Qi be D, then
sp(Qi, x := E) = Qi[D/x] � x =E[D/x].
2. If an xC-equality does not occur in Qi, and an xv-equality occurs in Qi, let the non-x variable occurring in the
leftmost xv-equality of Qi be w, then sp(Qi, x := E) = Qi[w/x] � x = E[w/x].
3. If an xC-equality does not occur in Qi, and an xv-equality does not occur in Qi, and an xf-equality occurs in
Qi, let the non-x term occurring in the leftmost xf-equality of Qi be u, then sp(Qi, x := E) = Qi[u/x] � x =
E[u/x].
4. Otherwise, x is not defined in the scope of the assignment prior to use, and sp(Qi, x := E) = Qi [x0/x] � x =
E[x0/x].
Within a program we may establish a number of equalities between a variable and other variables, constants or
functions of constants or variables. In order to make the strongest post-condition calculation deterministic, we
distinguish between the following types of variable equalities:
Definition 1. xC-equality
An xC equality is any atom of the form x = C or C = x where x is a variable and C is a constant symbol.
Definition 2. xv-equality
An xv equality is any atom of the form x = v or v = x where x and v are variables.

International Journal of Information Technology and Knowledge Management (ISSN: 0973-4414)
July-December 2012, Volume 5, No. 2, pp. 493-496

Definition 3. xf-equality
An xf equality is any atom of the form x = f(t1, t2, ..., tn) or f(t1, t2, ..., tn) = x where x is a variable and f is an
n-ary function symbol and t1, t2, ..., tn are terms.
The new sp calculation for assignment is described by Algorithm (1).
Example Calculating sp for assignment
(i) sp(x = a � z = y * x, x := y)
� (x = a � z = y * x)[a/x] � x = y[a/x]
� (a = a � z = y * a) � x = y
�z = y * a � x = y
(ii) sp (x = X, x := 3 - 4 +2)
 � (x = X)[X/x] � x = (3 - 4 +2)[X/x]
 � (X = X) � x = (3 - 4 +2)
 � x = (3 - 4 +2)
As a side effect of the calculation process we may achieve automatic recognition of defects that relate to the use
of an unutilized variable. If the result of the sp calculation involves any references to v0 for a variable v then v
has been used prior to being initialized in the scope of the program segment being analyzed.
There are a number of reasons why this may occur:
• If v is declared locally, within the scope of the program segment being analyzed, then v0 indicates that v has
not been initialized prior to use.
This is a defect that affects portability, maintainability and reusability.
• If v is not declared locally then v0 indicates that v may be either a global variable, or a class variable (in OO
programs).
The identification and reporting of such semantics is useful to assist code readers in identifying defects related
to variable initialization.
It should be noted that due to the treatment given to sub-programs in chapter 8, the precondition prior to the
execution of the body of a procedure or function includes an xv-equality of the form v = v? for all formal
parameters v. This ensures that formal parameters are not considered uninitialized.
Lemma For a simple assignment of the form x: = ax + b under some precondition Q, where x is a variable, and

a and b are constants (a � 0), sp(Q, x := ax + b) = Q[()/x].
Proof For the assignment x: = ax + b to occur correctly in an imperative program, Q must be of the form (x =
t) � P, where t is a term, otherwise x is uninitialised prior to its use in the assignment, and the assignment itself
is defective.
LHS = sp(Q, x := ax + b)

= sp((x = t) � P, x := ax + b)
= ((x = t) � P)[t/x] � x = (ax + b)[t/x]
= ((t = t) � P[t/x]) � x = (at + b)
� P[t/x]) � x = (at + b)

RHS = Q[()/x]

= ((x = t) � P) [()/x].

= ((() = t) � P[()/x])

= ((() = t) � P[t/x])
=(x = at + b) � P[t/x]
� P[t/x] � (x = at + b)
� LHS

Conclusion
In this paper we discuss definitions for the strongest post-condition semantics of imperative programming
language constructs.
This paper makes contribution in that it describes an algorithm for constructing the strongest post-condition
specification from an assignment statement, without relying on the calculation of inverse functions or on the
introduction of new variables to the problem, as is the case with previous definitions. We also discuss the
problems with existing definitions of strongest post-condition for iterative constructs and procedure calls.
This paper also introduces a notational aid called the iterative-form notation. This notation is the foundation for
the future work in which we present an operational definition for calculating an iterative-form invariant for
iterative program constructs.

International Journal of Information Technology and Knowledge Management (ISSN: 0973-4414)
July-December 2012, Volume 5, No. 2, pp. 493-496

References

[1] Software Inspection: An effective verification process - A. Ackerman, L. Buchwald and F. Len ski,

1989.
[2] Predicate Calculus and Program Semantics Springer - Verlag E. Dijkstra and C. Scholten,1978.
[3] Understanding and Documenting Programs. IEEE Transactions on Software Engineering ,V. Basili and

H. Mills,1982
[4] Program Construction and Verification, Prentice Hall - R. Backhonse, 1986
[5] Software Quality Improvement, Specification, Derivation and Measurement using Formal Methods.

PhD thesis, School of Computing andInformation Technology, S. Pan. Griffth University, 1994.
[6] A Calculus of Refinements for Program Derivation, Acta Informatica - R. Back, 1988
[7] Powerful Techniques for the Automatic Generation of Invariants - S. Bensalem, Y. L akhnech and

H. Saidi,1996
[8] Automatic Generation of Invariants and Intermediate Assertions - N. Bjorner, A. Browne and Z.

Manna, 1997
[9] A Computational Logic Academic Press - R.Doyer and J. Moore, 1979
[10] R. Britcher: Using Inspections to Investigate Program Correctness, 1988
[11] Cleanroom Review Techniques for Application Development. In Proc. 6th International Conference on

Software Quality M. Deck, 1996
[12] Guarded Commands for Formal Derivation of Programs E. Dijkstra,1975
[13] A Discipline of Programming, Prentice Hall - E . Dijkstra, 1976
[14] A Method of Progmmminq. Addison-Wesky - E. Dijkstra and W. Feijien,1988
[15] How to solve it by Computer. Addison-Wesle - R.Dromey, 1982

