
IJITKMI Volume 7 • Number 1 • December 2013 pp. 103-107 (ISSN 0973-4414)

103

BPEL based scheduling in multi-agent system for

business applications
[1]

Surjeet Dalal,
[2]

Dr. Gundeep Tanwar,
[3]

Dr. Kamal Kumar Sharma

[1]
Assistant Professor, E-max Institute of Engg. & tech. Ambala, India

[2]
Associate Professor, BRCM College of Engg. & tech. Bhiwani, India

[3]
E-max School of Engg. & Applied Research. Ambala, India

surjeetdalalcse@gmail.com, mr.tanwar@gmail.com, kamalsharma111@gmail.com

Abstract: To develop the proficient and full-bodied

business application in the multifaceted business

scenario is the leading confront for software developers.

Mostly business applications consists the scheduling

phenomenon for managing the numerous economic

transaction during their operation. Hence to run the

operation smooth and robustly, the multi-agent system is

found as the supplementary appropriate alternative for

implementing and designing the business applications.

In this paper, the BPEL based scheduling is being

illustrated for handling the scheduling problem in MAS

based business application. This approach provides more

efficient mechanism for resolving this complicated

problem.

Keywords: MAS, Scheduling problem, business

applications, BPEL.

 INTRODUCTION

Intelligent agents began to appear in computer science

and artificial intelligence (AI) prose in the late 1980s as

an outcome of work within the objected orientation and

distributed AI fields. Despite over two decades of

history, a description for the term agent still remains

debated. Schleiffer et al. (2005) declared that ―intelligent

agent technology is the articulation of human decision-

making activities in the form of a computer program‖

[1]. While this definition is graceful, it is not sufficient in

that it does not explicitly specify the characteristics of

human behavior agents seek to imitate. Wooldridge &

Jennings (1995) put forward four distinct characteristics,

namely: sovereignty, social ability, reactivity, and pro-

activeness. These characteristics are widely accepted as

they are at the heart of what agents represent as the

human decision-making processes. This set of four

properties has been prolonged on extensively over the

years & across multiple fields [2].

Most early publications on agents cover work on

single agent systems, which are agents that assemble

information on behalf of a user, or do specific tasks for

them. Multi-agent systems consisting of multiple agents

interacting with each other and their environment are

known as multi-agent systems. In such systems, not all

agents are the same: each agent can have unique

capabilities and objectives, representing its real-world

complement. A multi-agent system is an assembly of

different agents, with different roles, capabilities and

goals – for different categories of agents.

In a multi-agent system the agent construct becomes

additional than just an entity performing local

responsibilities. The agent must also acquire the

capability to communicate and synchronize. The

important characteristics of a multi-agent system are

given below:

 Agents need each other for wholeness of

information and problem solving

 No global control system

 Data is decentralized

 Asynchronous computation

 Modularity

 The possibility to entrench multi-objective

functions

The fact that intend can be a step wise procedure, as

supplementary settlement of MAS [3]. Wooldridge et al.

(2005) listed the three main potentials offered by multi-

agent systems.

 First, a MAS system resembles the organization

of the business itself, making it easier for

programmers and analysts to understand its role

and actions.

 Second, problem solving in the system is based

on problem solving in the organization

(decentralized: no ―agent‖ owns the whole

system).

 Third, because agents are autonomous and

always active, the system is responsive to

changes and problems [4].

These facts indicate that the multi-agent system is

powerful in handling the business process during their

operation.

I. SCHEDULING PROBLEM

The scheduling algorithms can be characterized by the

following parameters

1. Hard real-time versus Soft real-time

2. Preemptive versus Non-preemptive scheduling

3. Dynamic versus Static

4. Centralized versus Decentralized

IJITKMI Volume 7 • Number 1 • December 2013 pp. 103-107 (ISSN 0973-4414)

104

These algorithms endeavor to schedule a set of tasks

for either a single processor or multiple processors. They

are most anxious with the timing constraints each task

has allied with its execution. Each task will cover a

deadline before which it must be executed. Guarantees

on meeting these timing constraints and how the system

handles those tasks that cannot meet their deadline, differ

based on which of the above characteristics the algorithm

possesses. Hard real time defines those systems that

require a 100% guarantee that all tasks meet their

deadlines. Soft real time systems are more lax.

In a hard real time system a task has a negative value

if it exceeds its deadline. In addition, it may even have

ruinous consequences. In a soft real time system the task

still has value, although that value is reduced. Soft real

time is normally characterized as an ―as close as

possible‖ approach.

Preemptive and non-preemptive algorithms differ in

their handling of task execution. A preemptive algorithm

has the ability to suspend a task that is currently being

executed so a task of a greater priority can execute first.

Non-preemptive scheduling does not have this ability so

all tasks are executed to completion once started.

Dynamic and static algorithms are different based

upon when they make decisions about scheduling. A

dynamic algorithm makes these decisions ―on the fly‖

during execution. Static algorithms make all scheduling

decisions before run time. For example, these decisions

may be stored in a table. When a task enters the system a

table lookup is performed to see how the task should be

planned. A centralized system utilizes a single machine

to collect information and to perform decision-making.

In a decentralized system, decisions are made at the

processor level [5].

II. BPEL

The concept of orchestration is embedded on existing

infrastructures for application amalgamation, classically

used to automate business processes and integrate a

variety of legacy components in these systems, a

centrally-controlled set of workflow logics is developed

to assist interoperability among applications. A common

implementation of orchestration is a central engine

interfacing multiple external participants: this solution

makes it possible to merge large business processes

without re-developing the solutions that originally

automated the individual processes, thus making

maintenance easier.

The Web Services Business Process Execution

Language (WS-BPEL), also known as BPEL, is a

primary industry specification that standardizes

orchestration in the context of Web Services. The BPEL

Orchestration leverages the intrinsic interoperability

provided by Web Services, conceiving orchestration

itself as a service, specified in terms of a high level

language and implemented through an engine [6].

More in detail, BPEL is an XML-based specification

language for describing business processes, built on top

of the WSDL language for describing the interface of

Web Services. A Web Service interface is specified in

terms of port types, operations, and messages—which,

e.g. in an object-oriented setting, would roughly

correspond to the interface types, the method names, and

the method types, respectively. In the BPEL case, port

types are lists of operations, which can be either one-way

or request-response—depending on whether they are

asynchronous or not. The content of a message is an

XML data record.

On top of a WSDL document describing the above

―boundary‖ aspects, a BPEL specification provides

information on the internal orchestration process of the

Web Service. More precisely, a BPEL specification is

composed of four declaration parts: the partner link

types, the variables, the correlation sets, and the activity.

Partner link types—it define the feasible categories

of partner links, which are abstract references to the Web

Services orchestrated by the engine: a business process

can access other services only through a partner link,

which is bound to an actual Web Service address either

at deployment-time or dynamically at run-time. In this

way, it is easy to articulate dynamic interconnecting

structures—a feature particularly suited to scenarios

where e.g. pools of Web Services are dynamically

bound/unbound to a business process in an orthogonal

way, based on load-balancing policies.

Variables—BPEL also defines variables, which can

carry XML data values and messages, and are used to

support the stateful character of orchestration processes.

In particular, such variables store the content of sent and

received messages, the results of partial computations,

and any other information required during orchestration.

Correlation sets — the global task of an

orchestration process is divided into different stateful

sessions called method instances, each holding its own

information about the conversation, stored in suitable

variables. The survival of different process instances

raises the problem of correctly routing the incoming

messages to the proper occurrence, and of providing an

uniqueness to each process instance in a declarative way.

This is achieved by the mechanism of correlation sets.

Correlation sets are sets of late-bound constants

called properties, which store sorts of session identifiers:

each process instance is uniquely identified within the

complete orchestration process by the values assumed by

such properties. The correlation method is based on the

proposal of aliasing a property with one (or more) part(s)

of a message to be sent or received. The value of the

property is guaranteed to equal the actual content of the

message: for instance, when an incoming message

contains an alias to a property p, its content c is checked

and used to dispatch the message to the proper process

instance—namely, the one having c as its value for the

property p.

Activities—Activities illustrate the behavior of the

business processes, and are generally built by composing

basic activities into structured activities. Basic activities

comprise the acts of transfer and getting requests and

replies (invoke, receive, reply), variable assignments

(assign), synchronizations of interior concurrent

activities through private links (source and target),

IJITKMI Volume 7 • Number 1 • December 2013 pp. 103-107 (ISSN 0973-4414)

105

waiting for a timeout (wait), and terminating the process

occurrence (terminate). Structured activities recognize

sequential compositions (sequence), protected choices

(pick), parallel compositions (flow), iteration cycles

(while), and multiple cases (switch).

In order to balance with the complexity of

specifications, and grant an encapsulation generalization

for different event kinds, the activity of an orchestration

process can be split in different ways. First, a basic

activity can take the structure of a scope, that is, a

separately-defined sub process with its own main

movement, variables and correlation sets: this

mechanism recursively allows for dividing a process into

different modules.

BPEL specification can also define fault handlers, i.e.

sub processes similar to scopes, triggered either by an

explicit throw statement, or automatically when an

activity fails. Analogously, compensation handlers

(triggered by the recompense statement) support the

long-running transaction attribute [7], while occurrence

handlers are executed when exception messages are

received or timeouts take place.

III. RELATED WORK

Lanzhou et al. (2009) intended the job scheduling

algorithm for the large-scale parallel applications based

on job pool in the varied environment. With the help of

this algorithm, the resources can be utilized according to

their potentials and the load balancing of resources may

be achieved [8].

Mosincat et al. (2011) presented the novel scheduling

algorithm for Cloud-based workflow applications. Their

implementation was based on BPEL, an industry

standard for workflow modeling, which did not require

any changes to the standard. It is based on, but not

limited to, the ActiveBPEL engine and Amazon’s Elastic

Compute Cloud. To automatically adapt the scheduling

decisions to network-related changes, the data

transmission speed between the available resources is

monitored continuously. Experimental results for a real-

life workflow from a medical domain indicate that both

the workflow execution times and the corresponding

costs can be reduced significantly [9].

Juhnke et al. (2010) presented the approach to allocate

BPEL workflow steps to accessible resources. The

approach took the data dependencies between workflow

steps and the utilization of resources at runtime into

account. This type of the developed scheduling algorithm

simulated the result of the makespan of workflows

whethere could be reduced by providing additional

resources from a Cloud infrastructure. If yes, Cloud

resources were automatically set up and used to increase

throughput. The proposed approach does not required

any changes to the BPEL standard. An implementation

based on the ActiveBPEL engine and Amazon's Elastic

Compute Cloud was presented. Experimental results for

a real-life workflow from a medical application indicate

that workflow execution times can be reduced

significantly [10].

Srinivasan et al. (2013) proposed the orchestration

engine for the supply chain system. The concept of

Business Process Execution Language (BPEL) was being

utilized to design the orchestration engine for the supply

chain management system. The Eclipse BPEL designer

was being used to build this engine for the supply chain

management systems. The logic of the orchestration

engine was being coded into the Java language. The

orchestration engine was accomplished for resolving the

challenges faced in the supply chain system competently.

It was very competent in controlling the bullwhip effect

occurred in the SCM [11].

IV. BPEL JOB SCHEDULING

To comprehend scheduling process, we will acquire

the sample business circumstances in the business

applications. The situation consists the process which is

required to poll for a file daily between 6 AM to 6:30

AM. For this purpose we require to form a BPEL process

in such way which can poll for particular file at some

location of server by using file adaptor configuration

wizard.

It may be created for polling for exacting file using

File Adaptor Inbound Service and write the file

information into database table. This process contains

 receive activity for obtaining payload from file

adaptor,

 Invoke activity for writing payload to database and

 Transform activity to map source data and

destination data.

This BPEL process will be reserved on polling for

particular file each time as per polling frequency defined

in configuring file adaptor wizard at design time. For

polling the file at specific time like 6 AM to 6:30 AM, it

is needed to add below piece of code in

schedulebpel.xml file of the BPEL process.

<activationAgents>

<activationAgent

className="oracle.tip.adapter.fw.agent.jca.JCAActiv

ationAgent"

partnerLink="readFileService"

heartBeatInterval="10">

<property

name="schedulerCallout">DefaultSchedulerCalloutI

mpl</property>

 <property name="endpointScheduleOn">0 0 06 * *

?</property>

 <property name="endpointScheduleOff">0 30 06 * *

?</property>

 </activationAgent>

</activationAgents>

Activation Agent is one which generates the endpoint

of adaptors active. There exists the input for adaptor

endpoints to establish the process. In the discussed

example readFileService partner link is lively end point

of BPEL process. The activation agent called ―heartbeat‖

that does scheduling action. The heartBeatInterval is

calculated in seconds which specifies the frequently the

schedule checked.

IJITKMI Volume 7 • Number 1 • December 2013 pp. 103-107 (ISSN 0973-4414)

106

Quartz is implemented as part of java class named

DefaultSchedulerCalloutImpl. The quartz scheduler turns

heartbeat on and off. The subsequently chattels in

scheduler code is endpointScheduleOn and

endpointScheduleOff. from side to side these properties

we will situate the scheduling time for polling

mechanism. The attribute for endpointScheduleOn and

endpointScheduleoff element is cron sequence. The Cron

sequence is unix utility that permit tasks to be repeatedly

run in the background at regular intervals.

This cron Sequence follows the specified set of

syntax. In the above code cron sequence is as follows.

<property name="endpointScheduleOn">

0 0 06 * * ?</property>

<property name="endpointScheduleOff">

0 30 06 * * ?</property>

Here 0 0 19 * * ? and 0 30 19 * * ? specify that

process should fire everyday between 6 AM and 6:30

AM. The Cron sequence is a string included of 6 or 7

fields separated by whitespace. The 7
th
 field is optional.

V. CONCLUSION

There are several job scheduling solutions. But it can

also be done within BPEL. The benefit of this approach

is that you can trigger BPEL or ESB services or other

Web services without doing any programming. It is all

started from the BPEL Console, where the definite

instances can also be terminated. And you can make it as

standard as you want and schedule as many instances as

you want. So you can have a daily, weekly and/or a

monthly scheduled instance the same time.

As a database programmer at heart, I think the quickest

way to get a BPEL process started according to a

potentially complex schedule with minimum coding

effort would be using a database job (Schedule) that

updates a database record in conjunction with a BPEL

process that polls the database.

The huge difficulty, separately from the insignificant

transparency of recurrently polling the database by the

BPEL, is the split of process logic between the database

and the BPEL PM. For uncomplicated schedule, it uses

the alternative of creating a BPEL Process Dispatcher

process with the WHILE-WAIT-INVOKE logic.

REFERENCES

[1] Wooldridge, M., and Jennings, N.R. ―Intelligent
agents: theory and practice‖. The Knowledge
Engineering Review, 10, 2, 115-152. 2002.

[2] FIPA. ―The foundation for intelligent physical
agents‖. URL: http://www.fipa.org, 2003.

[3] Katia P. Sycara, ―Multiagent Systems‖, AI magazine
Volume 19, No.2 Intelligent Agents Summer, pp.
79-92, 1998.

[4] P. Charlton and E. Mamdani, ―A Developer's
Perspective on Multi-agent System Design‖, Multi-
Agent System Engineering, Lecture Notes in
Computer Science Volume 1647, pp 41-51, 1999.

[5] Peter Brucker, Scheduling Algorithms Fifth Edition,
Springer ISBN 978-3-540-69515-8 Springer Berlin
Heidelberg New York, 2005.

[6] BEA, IBM, Microsoft, SAP and Siebel, ―Business
Process Execution Language for Web Services
Version 1.1‖, S. Thatte, et al., May 2003.

ftp://www6.software.ibm.com/software/developer/li
brary/ws-bpel.pdf

[7] S. A. White. Business Process Modeling Notation.
Specification, BPMI.org, 2004

[8] Cancan Liu, Weimin Zhang, "BPEL-Based
Workflow Management and Parallel Job Scheduling
in Ensemble Prediction," gcc, pp.409-414, 2009
Eighth International Conference on Grid and
Cooperative Computing, 2009.

[9] Juhnke, E.; Dornemann, T.; "Multi-objective
Scheduling of BPEL Workflows in Geographically
Distributed Clouds," Cloud Computing (CLOUD),
2011 IEEE International Conference on , vol., no.,
pp.412,419, 4-9 July 2011

[10] rnemann, T.; Juhnke, E.; "Data Flow Driven
Scheduling of BPEL Workflows Using Cloud
Resources," Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on , vol., no.,
pp.196,203, 5-10 July 2010

[11] S. Dalal and Dr. S. Srinivasan, ―Constructing an
Orchestration Engine for Supply Chain Management
system‖, International Journal of Computer Science
and Management Research, ISSN: 2278–733X, Vol.
2, Issue 6, pp. 2709–2715 July 2013.

[12] Chern Han Yong and Risto Miikkulainen,
―Cooperative Coevolution Of Multi-Agent
Systems‖, Technical Report AI07-338, Department
of Computer Sciences, The University of Texas at
Austin, pp. 1-15, 2001.

[13] Federico Bergenti and Agostino Poggi, ―Middleware
and Programming Support for Agent Systems‖, in
Proceedings of the 2nd International Symposium
from Agent Theory to Agent Implementation,
Vienna (A), 2002, pp. 617-622.

[14] Franco Zambonelli, ―Developing Multiagent
Systems: The Gaia Methodology‖, ACM
Transactions on Software Engineering and
Methodology, Vol. 12, No. 3, Pages 317–370, July
2003.

[15] Yan Li and Xi-Zhao Wang, ―An on-line multi-CBR
agent dispatching algorithm‖, Soft Computing , Vol.
11, pp. 391–395, 2007.

[16] Matteo Baldoni and Cristina Baroglio, ―Agents,
Multi-Agent Systems and Declarative Programming:
What, When, Where, Why, Who, How?‖ Lecture
Notes in Computer Science Volume 6125, pp 204-
230, 2010.

[17] N Viswanadham and S Kameshwaran,
―Orchestrating a Network of Activities in the Value
Chain‖ in proceeding of 5th Annual IEEE
Conference on Automation Science and Engineering
Bangalore, India, August 22-25, 2009, pp. 501-506.

[18] Tony Andrews, Specification: Business Process
Execution Language for Web Services version 1.1.
http://www.106.ibm.com/developerworks/webservic
es/library/ws-bpel/, 2003

S. Dalal and Dr. V. Athavale, ―Approach of Multi-agent
system in Timetable scheduling problem using case
based reasoning: in proceeding of DST & CSI Sponsored
International Conference on Issues and Challenges in
Networking, Intelligence and Computing Technologies
ICNICT-2011 ISBN: 978-93-81126-27-1 pp 401-406
organized by KIET Ghazibad (U.P.) dated 2-3rd Sep
2011.

IJITKMI Volume 7 • Number 1 • December 2013 pp. 103-107 (ISSN 0973-4414)

107

