
 VVoolluummee--99,, NNuummbbeerr--11 JJuunn--DDeecc 22001155 pppp.. 1133--1188 IImmppaacctt FFaaccttoorr 22..88 available online at www.csjournalss.com

DOI: 10.141079/IJITKM.2015.903 Page | 13

TTiimmee bbaasseedd SSyynncchhrroonnoouuss GGlloobbaall SSttaattee DDeetteerrmmiinnaattiioonn

AAllggoorriitthhmm ffoorr MMDDSSss
Raman Kumar

1
, Parveen Kumar

2

1
Research Scholar, Deptt. of Computer Sci. & Engg., Mewar Univ., Chittorgarh, Rajesthan, INDIA

2
Department of Computer Science & Engineering, NIT, Hamirpur (H.P), INDIA

rmn.kmr1@gmail.com, pk223475@gmail.com

Abstract: Two checkpointing approaches i.e., coordinated checkpointing and times based checkpointing are widely

used in the literature of MDSs. Coordinated checkpointing protocols uses the less checkpoints and domino free but have

large coordinated message overheads as processes synchronize by exchanging coordinated message. However, time

based protocol requires every process to take checkpoint during checkpointing. Some of the time based protocols

defines the timeout period tp. When this timeouts occur, processes take their checkpoint. If the checkpointing interval is

too small then multiple checkpoints are transferred from MHs to MSS through wireless link and also checkpointing

takes some time to save the application state. This approach increases the checkpointing overheads. On the other hand,

if checkpointing interval is too large this may leads to large amount of computational loss during rollback and recovery.

As a result time based approach has minimum coordinated messages overheads cost but has high checkpointing cost as

it requires large number checkpoints than minimum but coordinated checkpointing approach have minimum

checkpointing cost than time based approach but higher coordinated message overheads cost. In this paper, we design

an efficient coordinated checkpointing protocol which uses time to indirectly coordinate to minimize the number of

coordinated message transmitted through the wireless link and reduces the number of checkpoints nearest to the

minimum. The algorithm is non-blocking and minimum process.

Keywords: Checkpointing, Global State, Mobile Distributed Systems, Consistent Global State, Coordinated

Checkpointing, Time based Checkpoiting

 Introduction

Checkpointing/rollback recovery is an attractive and popular technique which gives fault tolerance without

additional efforts in DSs [3]. A checkpoint is a global state of a process stored on stable storage. In a DS,

since the processes in the system do not share memory and have not any synchronized clock, a global state

of the system is defined as a set of LSs, one from each process. A global state is said to be “consistent” if it

contains no orphan message; i.e., a message whose receive event is recorded, but its send event is lost. To

recover from failure, the system restarts its execution from a previous CGS saved on the stable storage

during fault-free execution. Checkpointing algorithms for DSs have been extensively studied in the literature

(e.g., [2], [8], [9], [10], [11], [12], [13], [19]). Due to the emerging challenges of the MDS as low

bandwidth, mobility, lack of stable storage, frequent disconnections and limited battery life, the fault

tolerance technique designed for distributed system cannot directly implemented on mobile distributed

systems(MDSs) [1], [5], [14].[Figure 1]

Figure 1 Checkpointing and rollback recovery in MDS

A common goal of checkpointing algorithm for MDSs is to reduce the checkpointing cost by taking

minimum number of checkpoints and reducing the coordinated messages. Hence, the checkpointing

algorithms having lesser number of coordinated messages and fewer checkpoints nearly to minimum are

preferred for mobile environment.

Recovery after

failure

d

Checkpoint contents

transferred to MSS

Rollback

Failure

MSSi

C
h

ec
k

p
o
in

ti
n

g

MHi

C
h

ec
k

p
o
in

ti
n

g

Computing

https://f4mail.rediff.com/ajaxprism/writemail?mode=mail_to_individual&email=rmn.kmr1@gmail.com&filename=1437019970.S.4076.7201.F.H.TlJBTUFOIEtVTUFSAGRhdGE_.RU.rfs320,rfs320,921,441.f4-234-193.old&folder=Inbox
mailto:pk223475@gmail.com

 VVoolluummee--99,, NNuummbbeerr--11 JJuunn--DDeecc 22001155 pppp.. 1133--1188 IImmppaacctt FFaaccttoorr 22..88 available online at www.csjournalss.com

DOI: 10.141079/IJITKM.2015.903 Page | 14

Related Works and Problem Formulation

Recent research in checkpointing has considered for MDSs [1], [5], [15], [20], [21]. In [1] authors

introduced a two-phase checkpointing protocol to determining global consistent checkpoints for mobile

systems. In their protocol, they proposed that checkpoint be stored on stable storages at the MSS. In this

approach, an MH takes a local checkpoint whenever a message receipt is preceded by the message sent at

that MH. This algorithm has no control over checkpointing activity on MHs and depends totally on

communication patterns. In [14] authors evaluated the performance of different state saving protocols and

handoff strategies. They also suggested storing checkpoints on MSS. An adaptive checkpointing scheme

which uses time to indirectly coordinate the creation of CGS for mobile systems was proposed in [11]. A

hybrid checkpointing protocol which leaves an agent process on each MSS was developed in [19]. In this

approach processes in SHs recover from consistent checkpoints during recovery.

Cao and Singhal [5] achieved non-intrusiveness in minimum-process algorithm by introducing the

concept of mutable checkpoints to adapt to mobile environments. This algorithm is modified version of the

algorithm proposed in [4]. Mutable checkpoints need not be saved on the stable storage and can be store

on the main memory of the MHs and has not any transferring cost. In this algorithm, checkpoint initiator

process (says Pi) sends the checkpoint request to Pj only if Pi receives m from Pj in the current

checkpointing interval (CI). If Pj does not inherit the request, it simply ignores it. Otherwise, Pj takes its

tentative checkpoint and propagates the request to Pk only if Pj receives m from Pk in the current CI. In this

case, if Pj knows that some other process has already sent the checkpoint request to Pk and Pk is not going to

inherit the current checkpoint request, then Pj does not send the checkpoint request to Pk. This process is

continued till the checkpoint request reaches all the processes on which the initiator process transitively

depends. Suppose, during checkpointing process, P1 receives m from P2. P1 takes its mutable checkpoint

before processing m only if the following conditions are met: (i) P2 has taken some checkpoint in the

current initiation before sending m (ii)P1 has not taken any checkpoint in the current initiation. (iii)P1 has

sent at least one message since its last permanent checkpoint. If P1 takes mutable checkpoint and is not a

member of the minimum set, it discards its checkpoint on commit.

In papers [6], [16], [11], and [19] authors proposed an efficient time base checkpointing algorithm. The

algorithm presented in [6] has lower coordinated message overheads but a global checkpoint consists of all

the Nth checkpoints of every process which awoke the processes in doze mode operation. In [16], each

process takes its checkpoint at predetermined time instants according to its own local clocks to make the

checkpoint consistent. This problem is addressed by using extra messages for clock synchronization. In

[11], authors proposed adaptive checkpointing algorithm where they used time to indirectly coordinate the

creation of recoverable consistent checkpoints. It requires that checkpoints be sent back only to home

agents, which results in high failure-free overhead during checkpointing [17].

Proposed Algorithm

A. System Model

The MDS can be considered as consisting of “n” Mobile Hosts (MHs) and “m” Mobile Support Stations

(MHSs). All the MSSs are connected through static wired network. A cell is a small geographical area

around the MSS supports a MH only within this are and there is a wireless link between a MH to MSS. A

MH can communicate to another MH only through their reachable MSS. There are n spatially separated

seqsuential processes denoted by P0, P1,.., Pn-1, running on MHs or MSSs, constituting a mobile distributed

computing system. Each MH/MSS has one process running on it. The processes do not share memory or

clock and message passing is the only way for processes to communicate with each other.

As there is no common clock and processes do not share a common memory but every MH and MSS

contains a system clock, with typical clock drift rate p in the order of 10
-5

 to 10
-6

. The system clocks of

MSSs can be synchronized using the network time protocol (NTP). MHs start their execution with their

own initial timer. Clock can be re-synchronizing with following two methods, to solve the initial time

inaccuracies.

B. Data structure

a) Each process Pi maintains the following data structure:

Proposed algorithm consider a distributed system which has a set of n processes, {P0, P1,….,Pn-1} where

each process Pi maintains the following data structure.

ci: a Boolean flag ci that is initially set at zero. It is set 1only when process Pi sent a message during current

CI, after its latest checkpoints.

csn: checkpoint sequence number of the process which is incremented after taking the checkpoint.

 VVoolluummee--99,, NNuummbbeerr--11 JJuunn--DDeecc 22001155 pppp.. 1133--1188 IImmppaacctt FFaaccttoorr 22..88 available online at www.csjournalss.com

DOI: 10.141079/IJITKM.2015.903 Page | 15

CLKi: clock of process Pi which shows the time interval until next checkpoint.

CSi: a Boolean flag Checkpoint State CSi which is initially set to 0 which shows that process does not takes

during its current CI. If process takes checkpoint during its current CI then it will set CSi = 1.

mi: computation message sent by the process Pi.

SCi: Each process Pi takes soft checkpoint SCi when its local timer expires and does not sends any during

its current CI.

Replyi: Each process Pi sends reply message to its local MSS of taking the permanent and soft checkpoint

after the expiries of its timer.

b) Each MSS maintains the following data structure:

CLKM: clock of the MSS which show the time interval until next checkpoint.

Minset[]: Each MSS maintains the set to minimum number of process which communicate through the

MSS.

C. The Algorithm

When local clock of process Pi expires

 If(CLKi has expired)

 If((ci=1)AND(CS=0))

 {take checkpoint;

 increment in csn;

 set ci=0; //

 continue normal operation ;}

 else if CS=1; //

 set CS=0;

 if SC= T; //

 set SC=F; //

 else

 continue normal operation;

 else

 set SC= T; // take soft checkpoint

When Pi receives piggybacked message from Pj when its local clock has not expired

When a process Pi sends computation message by attaching its csn to another process Pj through its

local MSS, MSS piggybacked it with time interval to next checkpoint, to the destination process.

Receives message (Pj, csnj, CLKM, mj)

 If((csni=csnj) AND (CLKi ≠CLKM))

 reset CLKi = CLKM;

 receives message

 else if ((csni < csnj) AND (ci=1))

 take checkpoint;

 increments csni;

 set CSi=1; set ci = 0;

 reset timer CLKi = CLKM;

 process message mj;

 set SC=F;

 else

 resumes normal operation

D. Working of the Algorithm

A process Pi takes its checkpoint on two ways:

a) On the expires of its local timer CLKi : if its timer has expires, then it checks the status of ci. if ci=1, then

it takes a permanent checkpoint, in another case if ci=0, it takes soft checkpoint(SC).

 VVoolluummee--99,, NNuummbbeerr--11 JJuunn--DDeecc 22001155 pppp.. 1133--1188 IImmppaacctt FFaaccttoorr 22..88 available online at www.csjournalss.com

DOI: 10.141079/IJITKM.2015.903 Page | 16

Figure 2 Working of proposed algorithm

b) On the receipt of piggybacked message in between current CI: in such case it will checks and compares

the received csn with its own csni. There may be following two possibilities:

i) msg_csn < = own_csni : if it is true, process Pi receives message as a normal without taking any

checkpoint. In Figure 2, csn of process P1 received with message m1 is equal to the csn2. Hence, checkpoint

is not taken after receiving the message. However process P2 takes a checkpoint, after expires of its current

CI it sends any message.

ii) msg_csn > own_csni: it is true, process Pi takes checkpoint first and then precedes the message. If

process Pi taken any soft checkpoint, it will discards it and set the checkpoint state (CS) is equal to 1.

Furthermore Pi does not takes checkpoint, in the current CI, after expires of its local clock CLKi, if it does

not send any message after taking the checkpoint and before expires of the clocks. In Figure 2, process P3

takes a checkpoint before receiving the message m2 as csn received with m3 is greater than its own csn.

Process P3 receives the message after taking the checkpoint C3,1 and it does not takes checkpoint after

expires of its local clock. The

Performance Analysis

In this section we analyze our checkpointing algorithm by comparing with different existing algorithms in

different context. We use following notations to compare our algorithm with some of the most notable

algorithms in this area of research, namely [2],[5],[6] and [11]. A performance comparison is given in Table

6.2. In this Table:

Cair Cost of sending a message m from any Pi to Pj;

Cwired Cost of sending a message in the wired link from MSS to MSS.

Cwl Cost of sending a message in the wireless link from MH to MSS.

Cbroad Cost of broadcasting a message to all processes;

Nmin Number of processes that belong to minset;

N Total number of MHs in the system;

Ndep Average no. of processes on which a process depends;

Tckpt Total time taken to store the checkpoint on stable storage

Table 6.2 compares the performance of our algorithm with the algorithms in [2], [5], [6], [11]. Compared to

Naves-Fuchs[11],which is also time-based , our algorithm minimize the half coordinated message including

with involving only minimum number of process, so that the total number of checkpoints transmitted onto the

wired and wireless network is reduced. Fewer checkpoints and coordinated message transmitted low power

consumption for MHs. Compared to [6], our approaches involves only minimum number of processes in global

state. For the size of the piggybacked information and the coordination message in the wireless link, our

algorithm reduces the overheads compared to Cao-Singhal [5] with O(1) to O(N).

Time where CLK2 was

supposed to take

checkpoint C3,1

Takes chkpt C3,1

and process the

msg

m2

m1

SC

C3,1

C2,1

C1,1

C3,0

C2,0

C1,0

P3

P2

P1

CLK2 expired here

CLK3

expired here

 VVoolluummee--99,, NNuummbbeerr--11 JJuunn--DDeecc 22001155 pppp.. 1133--1188 IImmppaacctt FFaaccttoorr 22..88 available online at www.csjournalss.com

DOI: 10.141079/IJITKM.2015.903 Page | 17

Table 1 Analytical performance comparison

Algorithm Blocking time Checkpoints Messages

Koo-Toueg[2] Nmin * Tckpt Nmin 3*Nmin* Ndep * (Cwired +Cwl)

Cao-Singhal[5] 0 Nmin 2*Nmin*(Cwired+Cwl)+min (Nmin*(Cwired

+Cwl), Cbroad)

N-Fuchs[11] 0 N 2*Nmin*(Cwired +Cwl)

AK[6] 0 N Nmin*(Cwired +Cwl)

Proposed 0 Nearest to Nmin Nmin *(Cwired + Cwl)

Our proposed checkpointing algorithm has the following characteristics:

Blocking time:

It is clear that the blocking time of our algorithm is 0.

Power consumption:
In our proposed checkpointing algorithm power efficiently is high compared to [6] and [11], as only minimum

number of process are involved in determining the consistent global state. It does not awaken the processes in

doze mode operation.

No. of coordinated message on wireless link:

It has very less coordinated message compared to [2], [5], [6] and [11] as it is takes decision about their

checkpoint independently and only reply message are sent through the wireless links to their local MSS.

Conclusion

In this paper we presented an efficient time based coordinated checkpointing algorithm for mobile computing

environments. Our work is an improvement over two phase algorithms [2], [4], [5], [7] and time based

approaches [6][11][16].The algorithm has the following good features which makes it suitable for MDSs: (a)It

does not use any extra message to coordinate and synchronize the clocks as clocks are attached with the

application message which reduces the coordination message overheads. (b) It takes reduced number of

checkpoints because a process does not take any temporary checkpoint and a process takes checkpoint if and

only if it has sent or receives any message during its current checkpoint interval which helps in the efficient use

of the limited resources of the mobile computing environment. (c) It is non-blocking and takes checkpoint

decision independently from the other. (d) It does not require tracking and computation dependency

information.

Hence our proposed algorithm takes reduced number of checkpoints, minimum interaction (only once) between

the MHs and the MSS and no there is no synchronization delay. To achieve these all objective we use very

simple data structure. These all features make our algorithm more suitable for mobile computing environment.

References

[1]. Acharya A. and Badrinath B.R., “Checkpointing Distributed Application on Mobile Computers”, in the Proc. of

the 3rd Int’l Conf. on Parallel and Distributed Information Systems, pp. 73-80, Sept. 1994.

[2]. Koo R. and Toueg S., “Checkpointing and Roll-Back Recovery for Distributed Systems”, IEEE Trans. on Software
Engg., Vol.13, No.1, pp.23-31, Jan. 1987.

[3]. Candy K.M. and Lamport L., “Distributed Snapshots: Determining Global State of Distributed Systems”, ACM
Trans. on Computing Systems, Vol. 3, No. 1,pp. 63-75, Feb.1985.

[4]. Cao G. and Singhal M., “On Coordinated Checkpointing in Distributed Systems”, IEEE Trans. on Parallel and
Distributed Systems, Vol. 9, No.12, pp. 1213-1225, Dec.1998.

[5]. Cao G. and Singhal M., “Mutable Checkpoints: A New Checkpointing Approach for Mobile Computing Systems”,
IEEE Trans. on Parallel and Distributed Systems, Vol. 12, No.2, pp. 157-172, Feb. 2001.

[6]. Singh A.K., “On Mobile Checkpointing using Index and Time Together”, World Acdemy of Science, Engineering
and Technology, Vol 32, pp. 144-151, 2007.

[7]. Kumar P., Kumar L., Chauhan R.K. and Gupta V.K., “A Non-Intrusive Minimum Process Synchronous
Checkpointing Protocol for mobile Distributed Systems”, in the Proc. of the IEEE ICPWC-2005, Jan. 2005.

[8]. Elnozahy E.N., Alvisi L., Wang Y.M. and Johson D.B., “A Survey of Rollback- Recovery Protocols in Message-
Passing Systems”, ACM Computing Surveys, Vol.34, No.3, pp. 375-408, 2002.

[9]. Elnozahy E.N., Johson D.B. and Zwaenepoel W., “The Performance of Consistent Checkpointing”, in the Proc. of
the 11th Symp. on Reliable Distributed Systems, pp. 39-47, Oct. 1992.

[10]. Johnson, D.B., Zwaenepoel, W., “Sender-based message logging”, In the Proc. of the 17th Int’l Symp. on Fault-
Tolerant Computing, pp. 14-19, 1987.

 VVoolluummee--99,, NNuummbbeerr--11 JJuunn--DDeecc 22001155 pppp.. 1133--1188 IImmppaacctt FFaaccttoorr 22..88 available online at www.csjournalss.com

DOI: 10.141079/IJITKM.2015.903 Page | 18

[11]. Neves N. and Fuchs W. K., “Adaptive Recovery for Mobile Environments”, ACM Communication, Vol. 40, No.1,
pp. 68-74, January 1997.

[12]. Silva L.M. and Silva J.G., “Global checkpointing for distributed programs”, in the Proc. of the 11th Symp.
Reliable Distributed Systems, pp. 155-62, Oct. 1992.

[13]. Storm R. and Temini S., “Optimistic Recovery in distributed Systems”, ACM Trans. on Computer Systems, pp.
204-226, Aug. 1985.

[14]. Prakash R. and Singhal M., “Low-Cost Checkpointing and Failure Recovery in Mobile Computing Systems”,
IEEE Trans. on Parallel and Distributed Systems, Vol. 7, No.10, pp1035-1048, Oct. 1996.

[15]. Cao G. and Singhal M., “On the Impossibility of Min-process Non-blocking Checkpointing and an Efficient
Checkpointing Algorithm for Mobile Computing”, in the Proc. of the Int’l Conf. on Parallel Processing, pp.37-44,
Aug. 1998.

[16]. Neogy S., Sinha A., and Das P., “Distributed Checkpointing using Synchronized Clocks,” in the Proc. the 26th
IEEE Annual Int’l Conf. Computer Software and Applications (OMPSAC’02), pp. 199-206, 2002.

[17]. J. Ahn, S. Min, and C. Hwang, “A Casual Message Logging Protocol for Mobile Nodes in Mobile Computing
Systems”, Future Generation Computer Systems, Vol. 20, No. 4, pp. 663-686. May 2004.

[18]. Jangra Surender et.al “Low Overhead Time Coordinated Checkpointing Algorithm for Mobile Distributed
Systems”, Computer Networks & Communications (NetCom), Volume 131, 1Pg. 173–182, Springer, New York,
2013, ISBN 978-1-4614-6153-1, ISSN 1876-1100

[19]. Surender Kumar, et.al., “Designing and Performance Analysis of Coordinated Checkpointing Algorithms for
Mobile Distributed Systems”, International Journal of Distributed and Parallel Systems [IJDPS] (AIRCC France),
Vol.1, No.1, pp. 61-80, Sept. 2010. ISSN 2229-3957(Print), 0976-9757(Online).

[20]. Manivannan D. and Singhal M., “Quasi-Synchronous Checkpointing: Models, Characterization, and
classification”, IEEE Trans. Parallel and Distributed System, Vol.10, No.7, pp.703-713, July 1997.

[21]. Manivannan D. and Singhal M., “A Low overhead Recovery Techniques using Quasi Synchronous Checkpointing
”, in the Proc. of the 16th int’l conf. on Distributed Computing Systems, pp100-107, May 1996

