
A Review of Cooperative Cache Management Techniques

in MANETs
 Prashant Kumar Naveen Chauhan

 prashantkumar32@gmail.com naveen@nitham.ac.in

 Department of Computer Science and Engineering

 National Institute of Technology, Hamirpur (H.P.) INDIA

Abstract- Caching of frequently accessed data in ad hoc

networks is a potential technique that can improve the

data access, performance and availability. A cooperative

cache-based data access framework lets mobile node

cache the data or the path to the data to reduce query

delays and improve data accessibility. Due to mobility and

resource constraints of ad hoc networks, cooperative

caching techniques designed for wired network may not

be applicable to ad hoc networks. The objective of

cooperative caching is to improve data availability and

access efficiency by collaborating local resources of

mobile devices. This paper reviews the various cooperative

cache management techniques in the mobile ad-hoc

networks.

Keywords: Mobile adhoc networks, cooperative

caching, cache resolution

1. INTRODUCTION

Mobile Ad hoc Network are autonomously structured

multi-hop wireless links in peer to peer fashion

without aid of any infrastructure network. Due to lack

of infrastructure support, each node in network act as

router, coordinating to forward data packets to other

nodes. Rapid progress in portable computer

technologies allows MANET to be used in number of

areas such as military application, industrial and

commercial areas.

 Example of Ad hoc Network is a battlefield.

Several Commanding Officers and group of soldiers

form an Ad hoc Network. Each higher Officer have

relatively powerful data center all Officers under

them have to access data centers of higher officers to

get various data needed by them. Soldiers under these

lower rank Officers access data from stores of these

Officers. If one Soldier access some data, it may be

possible that nearby soldiers share common operation

and require same data sometimes later. Such scheme

saves large amount of bandwidth, time and battery

power.

 Mobile host cooperate with each other to forward

data and mobile host have peer to peer connection

among themselves. There are several characteristics

of Mobile Ad Hoc network. Firstly, Mobile devices

are frequently disconnected due to mobility or the

need to conserve power. Secondly, Devices employ

multi-hop communication through unreliable links,

which may cause long Communication delay. Third,

Broadcast in Mobile Ad Hoc Network is costly thus

traditional cache consistent scheme are not suitable

for these network.

 Mobile Ad hoc networks are ideal in situations

where installing an infrastructure is not possible

because the infrastructure is too expensive or too

vulnerable. This type of network can communicate

with external networks such as Internet through a

gateway [10]. However, MANETs are limited by

intermittent network connections, restricted power

supplies, and limited computing resources. These

restrictions raise several new challenges for data

access applications with the respects of data

availability and access efficiency. In ad hoc

networks, mobile nodes communicate with each other

using multihop wireless links. Due to a lack of

infrastructure support, each node acts as a router,

forwarding data packets for other nodes. Most

previous research in ad hoc networks focused on the

development of dynamic routing protocols that can

efficiently find routes between two communicating

nodes. Although routing is an important issue, but the

ultimate goal of ad hoc networks is to provide mobile

nodes with access to information.

 In ad hoc networks, due to frequent network

partition, data availability is lower than that in

traditional wired networks. This problem can be

solved by caching data items on mobile hosts.

However, the movement of nodes, limited storage

space and frequent disconnections limit the

availability. By the caching of frequently accessed

data in ad hoc networks we can improve the data

access, performance and availability. A data

management in adhoc network that is based on

cooperative caching data access framework lets

mobile node to cache the data or the path to the data

to reduce query latency and improve data

accessibility. Due to mobility and resource

constraints of ad hoc networks, caching techniques

designed for wired network may not be applicable to

ad hoc networks.

2. WHY CACHING?

Let consider a scenario in which mobile devices

always retrieve data from the data center. This may

result in a large amount of traffic in the MANET.

This, apparently, is undesirable as traffic directed to

the data center consumes wireless bandwidth as well

as power of mobile devices. In addition, a mobile

host suffers from high access latency if it is distant

from the data center, and packet loss probability for

long-distance data access is high. Furthermore, traffic

near the data center will be heavy, and this leads to a

potential performance bottleneck. These problems are

more pronounced when the network size is large,

which results in poor scalability of the system. The

above observations motivate researchers to

investigate data caching techniques for MANETs.

With data cached in mobile nodes, a data request may

be satisfied by a nearby caching site, instead of being

serviced by the data center.

 In many applications, mobile nodes in a MANET

share common interests. In this scenario, sharing

cache contents between mobile nodes offers

significant benefits. Typically, nodes cache data

items for serving their own needs. Cache sharing,

however, allows geographically neighboring mobile

nodes to access each other’s cache contents. By doing

so, the number of long-distance data accesses to the

data center can be reduced. The key to this technique

is that a node has to know if there is some node in its

vicinity that has cached the data it requires and where

it is, if any. One approach to deal with this

requirement is to let a mobile node record the caching

information about a nearby node while forwarding

the data requested by the node. The caching

information can subsequently be used to direct

requests for the same data to the caching site.

 If mobile users around infostations, which have

limited coverage, form an ad hoc network, a mobile

user who moves out of the range of a particular

infostation can still access the data it contains. If one

of the nodes along the path to the data source has a

cached copy of the requested data, it can forward the

data to the mobile user, saving bandwidth and power.

Thus, if mobile nodes can work as request-

forwarding routers, they can save bandwidth and

power and reduce delays. Since MANETs are mobile

and constrained by limited energy, bandwidth, and

computation power, which is a big concern when

designing protocols for such networks.

3. COOPERATIVE CACHING IN MOBILE

ADHOC NETWORK

As we have seen that cooperative caching is helpful

to reduce the use of network bandwidth and access

time to retrieve the data from the data center. Many

researchers provide various techniques in order to

retrieve the data more efficiently. Some of the

techniques are described here.

3.1 PUSH AND PULL APPROACH

 The two basic types of cache sharing techniques

are push based and pull based. With push-based

cache sharing, when a node acquires and caches a

new data item, it actively advertises the caching event

to the nodes in its neighborhood. Mobile nodes in the

vicinity will record the caching information upon

receiving such an advertisement and use it to direct

subsequent requests for the same item. This scheme

enhances the usefulness of the cached contents. The

cost we have to pay is the communication overhead

for the advertisement; an advertisement is useless if

no demands for the cached item arise in the

neighborhood.

 In the push-based scheme, the caching information

known to a node may become obsolete due to node

mobility or cache replacement. The pull-based

approach may overcome this problem. With pull-

based cache sharing, when a mobile node wants to

access a data item that is not cached locally it will

broadcast a request to the nodes in its vicinity. A

nearby node that has cached the data will send a copy

of the data to the request originator (a pull operation).

Unlike pushing, pulling allows the node to utilize the

latest cache contents. However, in contrast with the

pushing technique, the pulling scheme has two

drawbacks:

1. In case the requested data item is not cached by

any node in the vicinity, the requester node will wait

for the time-out interval to expire before it proceeds

to send another request to the data center. This will

cause extra access latency, and the pulling effort is in

vain.

2. Pulling resorts to broadcast to locate a cached copy

of an item. In addition, more than one copy will be

returned to the request originator if multiple nodes in

the neighborhood cache the needed data. This

introduces extra communication overhead. [1]

 Another issue of concern is the limited cache space

that is available in a mobile node. Hence, a cache

replacement mechanism must be in place for evicting

data items from the cache to make room for a newly

acquired one, when the cache is full. Since cache

contents of a node are shared by other nodes, a good

cache replacement policy should take into

consideration the access demands from the entire

neighborhood.

3.2 COOP – A cooperative caching service in

MANETs
Yu Du [2, 3] et. al. presents COOP, a novel

cooperative caching scheme for on-demand data

access applications in MANETs. The objective is to

improve data availability and access efficiency by

collaborating local resources of mobile nodes. The

cooperation of caching nodes is twofold. First, a

caching node can answer the data requests from other

nodes. Second, a caching node stores the data not

only on behalf of its own needs, but also based on

other nodes’ needs. COOP addresses two basic

problems for cooperative caching in MANETs:

1. Cache resolution – how does a mobile device

decide where to fetch a data item requested by the

user?

2. Cache management – how does a mobile device

decide which data item to place/purge in its local

cache?

 For cache resolution, COOP tries to discover a data

source which induces less communication cost by

utilizing historical profiles and forwarding nodes. For

cache management, COOP minimizes caching

duplications between neighbor nodes and allows

cooperative caches to store more distinctive data

items to improve the overall performance.

3.2.1. CACHE RESOLUTION

Cache resolution addresses how to resolve a data

request with minimal cost of time, energy, and

bandwidth. In cooperative caching, the emphasis of

cache resolution is to answer how nodes can help

each other in resolving data requests to improve the

average performance. In COOP the authors give three

cache resolution schemes:

1. Hop-by-hop cache resolution

2. Zone-based cache resolution

3. The cocktail resolution scheme

 For on-demand data access applications, the

traditional way of resolving a data request is to check

the local cache first and send the request to the server

after local cache misses. This scheme is referred to as

SimpleCache in [5]. This scheme works well as long

as the connection to the server is reliable and not too

expensive; otherwise, it results in failed data requests

or request timeouts. To increase data availability and

reduce the cost in terms of increased data access

latency and increased energy consumption, hop-by-

hop cache resolution allows a node on the forwarding

path to serve as a proxy for resolving the request. If a

forwarding node caches an unexpired copy of the

requested data, it can send a reply to the requester

and stop forwarding the data request.

 The second approach is zone-based cache

resolution. This scheme is the extension of the hop-

by-hop resolution scheme. If a forwarding node does

not have the data locally but it knows a closer data

source (e.g. by proactive data discovery in its

cooperation zone), it can also redirect the request to

the closer data source, which also reduces the travel

distance of data messages and hence minimizes the

energy cost and response delay.

 COOP uses a cocktail approach based on the basic

approaches described above. COOP uses profile-

based resolution after the local cache misses. If no

matching cache is found or the request fails, COOP

uses reactive approach to discover the data in its

cooperation zone. If this again fails, COOP forwards

the data request to the data server, and hop-by-hop

resolution is used to resolve the request along the

forwarding path.

3.2.2 CACHE MANAGEMENT
For cooperative caching, the emphasis of cache

management is how to manage an individual cache

not only from the local node’s point of view, but also

from the view of the overall cooperative caching

system. To maximize the capacity of cooperative

caches, COOP tries to reduce duplicated caching

within the cooperation zone, such that the cache

space can be used to accommodate more distinct data

items. In this paper the authors categorize cached

data copies based on whether they are already

available in the cooperation zone or not. A data copy

is primary if there is no other primary copy within the

zone. Otherwise, the data copy is secondary. To

decide caching priorities of primary and secondary

data the inter- and intra-category rules are used.

1. The Inter Category Rule: The idea of inter-

category rule is to put primary items at a priority

level, i.e. secondary items are purged to

accommodate primary items, but not vice versa. The

problem in implementation is how to determine

whether a data item is primary or secondary. Here the

authors use a simplified approach to address this

problem. Once a node fetches a data item, it labels

the item as primary copy if the item comes from a

node beyond the zone radius. Otherwise, if a data

item comes from within the zone radius, then check

whether the data provider labels the item as primary

or secondary. If the provider already labels its copy

as primary, the new copy would be secondary since

there will not be duplicated primary copies in the

same cooperation zone. On the other hand, if the

provider tags its own copy as secondary, the provider

needs to attach the information of the primary copy

holder. If the primary copy holder is beyond the zone

radius, the new copy is primary copy; otherwise, the

new copy is a secondary copy.

2. The Intra Category Rule: The intra-category rule

is used to evaluate the data items within the same

category. For this purpose, here the authors simply

adopt the LRU (least recently used) algorithm.

3.2.3 LIMITAION OF COOP

To improve data availability and access performance,

COOP addresses two basic problems of cooperative

caching. For cache resolution, COOP uses the

cocktail approach which consists of two basic

schemes: hop-by-hop resolution and zone-based

resolution. By using this approach, COOP discovers

data sources which have less communication cost.

For cache management, COOP uses the inter- and

intra-category rules to minimize caching duplications

between the nodes within a same cooperation zone

and this improves the overall capacity of cooperated

caches. The disadvantage of the scheme is that

flooding incurs high discovery overhead and it does

not consider factors such as size and consistency

during replacement.

3.3 CacheData, CachePath and HybridCache

In [4, 5] Yin and Cao propose three schemes:

CachePath, CacheData, and HybridCache. In

CacheData, intermediate nodes cache the data to

serve future requests instead of fetching data from the

data center. In CachePath, mobile nodes cache the

data path and use it to redirect future requests to the

nearby node which has the data instead of the

faraway data center. To further improve the

performance, we design a hybrid approach

(HybridCache), which can further improve the

performance by taking advantage of CacheData and

CachePath while avoiding their weaknesses.

3.3.1 CacheData and CachePath

 Figure 1: A Mobile Adhoc Network

 In CacheData, if a node finds many requests for a

particular data item d then data item is cached by the

node. For example, in figure 1 both node B and node

C request d through node A, node A knows that d is

popular and cache it locally. Future request by node

D can be served by node A. Suppose the data center

receives several requests for d forwarded by node F.

Nodes along the path F-C-A may all think that d is a

popular item and should be cached. However, it

wastes a large amount of cache space if three of them

all cache d. To avoid this, authors proposed a

conservative rule. That states: A node does not cache

the data if all requests for the data are from the same

node. As in the previous example, all requests

received by node F are from node C, which in turn

are from node A. With the new rule, node C and node

A do not cache d. If the requests received by node A

are from different nodes such as node C and node D,

node A will cache the data.

 The idea of CachePath can be explained by using

figure 1. Suppose node G has requested a data item d

from server. When node E forwards the data d back

to node G, node E knows that node G has a copy of d.

Later, if node H requests d, node E knows that the

data server is three hops away whereas node G is

only one hop away. Thus, node E forwards the

request to node G instead of node B. When saving

the path information, a node need not save all the

node information along the path. Instead, it can save

only the destination node information, as the path

from current router to the destination can be found by

the underlying routing algorithm.

 In CachePath, a node does not need to record the

path information of all passing-by data. For example,

when d flows from data server to destination node G

along the path A-B-E, node A and node B need not

cache the path information of d since node A and

node B are closer to the data center than the caching

node G. Thus, a node only needs to record the data

path when it is closer to the caching node than the

data center.

3.3.2 Hybrid Cache
In HybridCache, when a mobile node forwards a data

item, it caches the data or the path based on some

criteria. These criteria include the data item size and

the time-to-live (TTL) of the item. For a data item d,

the following heuristics are used to decide whether to

cache data or path:

1. If size of d is small, CacheData should be adopted

because the data item only needs a very small part of

the cache; otherwise, CachePath should be adopted to

save cache space. The threshold value for data size is

denoted as �s.

2. If TTL of d is small, CachePath is not a good

choice because the data item may be invalid soon.

Using CachePath may result in chasing the wrong

path and end up with resending the query to the data

center. Thus, CacheData should be used in this

situation. If TTL of d is large, CachePath should be

adopted. The threshold value for TTL is a system

tuning parameter and denoted as �TTL.

3.3.3 Limitations of CacheData and CachePath

As we seen in CacheData, forwarding nodes check

the passing-by data requests. If a data item is found to

be frequently requested, forwarding nodes cache the

data, so that the next request for the same data can be

answered by forwarding nodes instead of travelling

further to the data server. A problem for this

approach is that the data could take a lot of caching

space in forwarding nodes. To overcome this

problem the authors present another cache resolution

scheme CachePath. In CachePath forwarding nodes

cache the path to the closest caching node instead of

the data and redirect future requests along the cached

path. This scheme saves caching spaces compared to

CacheData, but since the caching node is dynamic,

the recorded path could become obsolete and this

scheme could introduce extra processing overhead.

Trying to avoid the weak points of those two schemes

the authors proposed HybridCache. In HybridCache,

when a mobile node forwards a data item, it caches

the data or the path based on some criteria. These

criteria include the data item size and the time-to-live

(TTL) of the item. Because due to the mobility of

nodes the collected statistics about the popular data

may become useless. One another drawback of these

schemes is that if the node does not lie on the

forwarding path of a request to the data center the

caching information of a node cannot be shared.

3.4 IXP and DPIP Protocols

Chiu et. el. [1] proposed two cooperative caching

schemes IXP and DPIP. Index Push (IXP) is push

based in the sense that a mobile node broadcasts an

index packet in its zone to advertise a caching event.

The Data Pull/Index Push (DPIP) is a pull based one.

DPIP is offers an implicit index push property by

exploiting in-zone request broadcasts.

3.4.1The IXP Protocol

The idea of IXP is based on having each node share

its cache contents with the nodes in its zone. To

facilitate exposition, authors call the nodes in the

zone of a node M the buddies of M. A node should

make its cache contents known to its buddies, and

likewise, its buddies should reveal their contents to

the node. IXP requires that, whenever a node caches

a data item, it broadcasts an index packet to its

buddies to advertise the caching event.

Each node maintains an index vector, denoted as IV.

An IV has N elements, where N is the number of data

items in the data set. Each element of IV corresponds

to a different data item and consists of three entries

that are used to record caching information of the

corresponding item. Consider the IV of a node M.

� The first entry associated with a data item x

is of type binary and is represented by

IV[x].cached. This entry indicates whether x

is cached locally. If the entry is TRUE, it

means that x is locally available; otherwise,

x has to be acquired from the data center or

some other node.

� The second entry, denoted as

IV[x].cachednode, is used to record a nearby

node that has cached x. For the sake of

saving storage space, M only records the last

buddy that has broadcasted an index packet

associated with x.

� The third entry, represented by IV[x].count,

maintains a count of M’s buddies that are

known to have cached x, after x was last

cached by M.

 Initially, the IV[x].cached is set to FALSE,

IV[x].cachednode is set to NULL, and IV[x].count is

set to zero.

 Consider that a node M wants to access a data item

x. M first checks its IV[x].cached to see if x is cached

locally. If the entry is FALSE, M proceeds to

examine IV[x].cachednode, expecting someone in the

vicinity may offer a cached copy of x. If the entry is

NULL, M sends a request packet toward the data

center. An intermediate node I on the path to the data

center can redirect the request to a buddy node that I

knows has cached the item according to its

IV[x].cachednode entry. If the entry of M is non-

NULL, M issues a request to the node, sayM1,

indicated by the entry, ifM1 is still in the zone. In

case that M1 no longer stays in M’s zone due to

mobility, M sends the request toward the data center.

 When M eventually receives a copy of x, it caches

x. In doing so, it may possibly need to evict another

cached item, say y, if its cache is full. M will set its

IV[x].cached to TRUE and IV[y].cached to FALSE

in this case. Then M notifies its buddies of both

caching and the accompanied replacement events.

Knowing what has been replaced enhances the

accuracy of the caching information. Upon receiving

the index packet, M’s buddies update their

IV[x].cachednode entries by setting them to M,

increase IV[x].count by one, and decrease

IV[y].count by one. Furthermore, if a buddy has

recorded M in its IV[y].cachednode, it has to set the

entry to NULL because y is no longer cached by M.

 Here the authors propose a count-based scheme,

denoted as CV, which employs IV[x].count entry for

cache replacement. Basically, CV attempts to replace

the items whose removals from the cache induce least

impact on satisfying data requests from the buddy

nodes.

 Consider a mobile node M. Recall that IV[x].count

indicates the number of M’s buddies that have cached

the item x after M last cached x. CV replaces the item

that has the maximum IV[x].count among all cached

ones. Replacing such an item tends to induce less

impact on M’s buddies because there will be less

buddies relying on M for accessing the item when the

count becomes bigger. Moreover, doing so has the

effect of limiting cache duplicates. Notice that once x

is chosen by M for replacement, M’s buddies will

decrement their IV[x].count by one. Consequently,

there will be less chance for these buddies to have x

replaced. This can ameliorate the problem of

concurrently replacing the same item by all the nodes

in the same neighborhood.

3.4.2 The DPIP Protocol
IXP is essentially push based in the sense that a

caching node “advertises” the caching information to

the surrounding buddies. Each node has a view of the

caching status in its zone only. However, due to node

mobility and some limitations of mobile devices such

as transient disconnections, the caching status

represented by IV may become obsolete or not up-to-

date.

 For example, suppose that, according to M’s IV,

none of M’s buddies caches x. If a new node that has

cached x moves into M’s zone, the cache status

cannot be captured by M’s IV with IXP. In the

following, we propose a more sophisticated protocol,

called DPIP, to deal with this problem. DPIP is

basically a pull-based protocol. However, it also

exploits an implicit index push property. We now

describe the details of DPIP.

 Similar to IXP, each node maintains an IV vector.

When a node M wants to access a data item x that is

not cached by itself, it first examines the entry

IV[x].cachednode to see if some buddy node in its

zone has cached x. If such a buddy node exists, M

issues a request to the node to ask for a copy of x in

the same way as IXP. However, unlike IXP, if

IV[x].cachednode entry is NULL, M broadcasts a

special data-pull packet, data_pull (dp for short), to

its buddies. The dp packet carries the IDs of both x

and the data item that will be replaced if the cache

space is full.

 Upon receiving the dp packet, a buddy node M1

will reply to M if either of the following conditions is

met:

1) It has cached x and

2) It knows some of its buddies has cached x (as per

its IV).

 If the first case is true, M1 returns a copy of x to

M. Otherwise, if the second case is true, M1 returns

to M a location_reply packet, which contains the

node ID recorded in M1’s IV[x].cachednode.

 In contrast with IXP, DPIP increases the chance

for M to obtain a copy of x from the nodes in its

neighborhood. This is argued as follows: In addition

to the fact that M can acquire x from its buddies if the

first condition specified previously is met, it may

possibly obtain the cache status of the nodes that are

beyond its zone but within the zones of its buddies as

specified by the second condition. In addition, the in-

zone dp broadcast, which initiates the “data pulling”

operation, allows DPIP to use the latest cache

contents.

3.4.3 LIMITATIONS OF IXP and DPIP

PROTOCOLS

In the IXP protocol when a node M enters in a new

zone, the nodes of the new zone are not aware about

M’s update. In their approaches the authors use a

cache replacement policy that based on the count

vector. According to the policy the data item with

higher count vector is replaced. A node with a Count

Vector 0 will never be replaced. This may cause the

waste of cache memory space.

3.5 Some Other Approaches

Moriya et.al. [11] proposed a “self-resolver”

paradigm, in which a client user itself queries and

measures which node it should access. In this method

if a node M requests the data D then it forwards a

query packet to its neighbor nodes. If some node has

the data D then it returns a REPLY packet to S.

Otherwise it recursively sends QUERY packets to its

neighboring nodes. The disadvantage of this

approach is flooding which introduce high discovery

overhead. Furthermore in this paper this issue is not

discussed that how the request of M is fulfilled if the

requested data is not cached any neighbor node.

 Chow et.al. [7, 8] have proposed a cooperative

caching protocol, called CoCa, for mobile computing

environments. In this protocol, mobile nodes share

their cache contents with each other to reduce both

the number of server requests and the number of

access misses. Further, built upon the CoCa

framework, a group-based cooperative caching

scheme, called GroCoCa, has been proposed in [9], in

which a centralized incremental clustering algorithm

is adopted by taking into consideration node mobility

and data access pattern. GroCoCa improves system

performance at the cost of extra power consumption.

 Lim et al in [6], a caching algorithm is suggested

to minimize the delay when acquiring data. In order

to retrieve the data as quickly as possible, the query is

issued and broadcast to the entire network. All nodes

that have this data are supposed to send an

acknowledgment back to the source of the broadcast.

The requesting node will then issue a request for the

data (unicast) to the first acknowledging node it hears

from. The main advantage of this algorithm is its

simplicity and the fact that it does achieve a low

response delay. However, the scheme is inefficient in

terms of bandwidth usage because of the broadcasts,

which, if frequent, will largely decrease the

throughput of the system due to flooding the network

with request packets [12]. Additionally, large

amounts of bandwidth will also be consumed when

data items happen to be cached in many different

nodes because the system does not account for

controlling redundancy.

4. CONCLUSIONS

In this paper we have discussed cache sharing issues

related to mobile adhoc network environment and

give analysis of some popular cooperative caching

schemes. These caching schemes are useful in

MANET environment. Here we present how these

schemes are advantageous in order to find a data item

in a MANET by using less resources (e.g. network

bandwidth, energy etc.) and improves the

performance(data availability and latency time). We

also discussed the limitations of these techniques. As

the cooperative caching is a useful technique to

improve the data availability in the MANET so these

analyses will be helpful for the future research.

5. REFERENCES

[1] Ge-Ming Chiu and Cheng-Ru Young, Exploiting

In-Zone Broadcasts for Cache Sharing in Mobile Ad

Hoc Networks IEEE TRANSACTIONS ON

MOBILE COMPUTING, VOL. 8, NO. 3, MARCH

2009.

[2] Y. Du and S. Gupta, COOP – A Cooperative

Caching Service in MANETs, Proceedings of the

IEEE ICAS/ICNS (2005), 58–63.

[3] Yu Du, Sandeep K.S. Gupta and Georgios

Varsamopoulos, Improving on-demand data access

efficiency in MANETs with cooperative caching, Ad

Hoc Networks, 7 (3), p.579-598, May 2009.

[4]L. Yin and G. Cao, “Supporting Cooperative

Caching in Ad Hoc Networks,” Proc. IEEE

INFOCOM ’04, pp. 2537-2547, 2004.

[5] L. Yin and G. Cao, “Supporting Cooperative

Caching in Ad Hoc Networks,” IEEE Trans. Mobile

Computing, vol. 5, no. 1, pp. 77-89, Jan. 2006.

[6] S. Lim, W. Lee, G. Cao, and C. Das, “A Novel

Caching Scheme for Internet Based Mobile Ad Hoc

Networks Performance,” Ad Hoc Networks, vol. 4,

no. 2, pp. 225-239, 2006.

[7] C.-Y. Chow, H.V. Leong, and A. Chan, “Peer-to-

Peer Cooperative Caching in Mobile Environments,”

Proc. 24th Int’l Conf. Distributed Computing

Systems Workshops (ICDCSW ’04), pp. 528-533,

2004.

[8] C.-Y. Chow, H.V. Leong, and A. Chan, “Cache

Signatures for Peer-to-Peer Cooperative Caching in

Mobile Environments,” Proc. 18th Int’l Conf.

Advanced Information Networking and Applications

(AINA ’04), pp. 96-101, 2004.

[9] C.-Y. Chow, H.V. Leong, and A.T.S. Chan,

“Group-Based Cooperative Cache Management for

Mobile Clients in Mobile Environments,” Proc. 33rd

Int’l Conf. Parallel Processing (ICPP ’04), pp. 83-90,

2004.

[10] Y. Sun et al. Internet connectivity for ad hoc

mobile networks. International Journal of Wireless

Information Networks, 9(2), April 2002.

[11] T. Moriya and H. Aida, “Cache Data Access

System in Ad Hoc Networks,” Proc. Vehicular

Technology Conf. (VTC ’03), vol. 2, pp. 1228-1232,

Apr. 2003.

[12] P. Gupta and P. Kumar, “The Capacity of

Wireless Networks,” IEEE Trans. Information

Theory, vol. 46, no. 2, pp. 388-404, 2000

[13] G. Cao, L. Yin, and C.R. Das, “Cooperative

Cache-Based Data Access in Ad Hoc Networks,”

Computer, vol. 37, no. 2, pp. 32-39, Feb. 2004.

[14] Y. Du, S. Gupta, Handbook of Mobile

Computing, CRC Press, 2004. Chapter 15, pp. 337–

360.

