
Network Simulator-3: A Review

Ashish Mohta, Sonali I. Ajankar, M. M. Chandane

Department of Computer Technology

Veermata Jijabai Technological Institute

 Mumbai, India

urashu06@gmail.com

s.ajankar9@gmail.com

mmchandane@vjti.org.in

ABSTRACT— Due to growth of computer networks and complex

scenarios the role of Network simulators in research field cannot be

ignored. Simulators are useful tools when one wants to consider

time and resources, implementation of new security solutions,

performance estimation etc. it provides a virtual environment for an

assortment of desirable features such as modeling a network based

on a specific criteria and analyzing its performance under different

scenarios.

The newly proposed network simulator NS-3 supports coupling,

interoperability, good memory management, debugging of split

language objects, coding in C++ and object oriented concepts, as

well as supports models supported by NS-2 and most suitable for

wireless networks. The primary purpose of this paper is to compare

and review this new simulator, as well as find its advantages in the

field of research and how it is different from others. We also discuss

the current demand of industry as well proposed a framework for a

simulator which most research people want.

Keywords- Network Simulator, Tool Command Language,

Network Animator

I. INTRODUCTION

Simulation is the imitation of some real thing, state of affairs,
or process. The act of simulating something generally entails
representing certain key characteristics or behaviors of a selected
physical or abstract system. Simulation is used in many contexts,
including the modeling of natural systems or human systems in
order to gain insight into their functioning, simulation of
technology for performance optimization, safety engineering,
testing, training and education. Simulation can be used to show
the eventual real effects of alternative conditions and courses of
action. Key issues in simulation include acquisition of valid
source information about the relevant selection of key
characteristics and behaviors, the use of simplifying
approximations and assumptions within the simulation, and
fidelity and validity of the simulation outcomes.

Why simulate?

To test any network we either need real system or tools or
simulators, but cost of installing real network is too high which
is not suitable for all cases. The following problems occur at the
time of testing:

 Field tests are expensive

 Food, lodging, equipment rental, labour, etc.

 Experiments (especially wireless) can be hard to
reproduce Collaboration

A typical network simulator can provide the programmer with the
abstraction of multiple threads of control and inter-thread
communication. Functions and protocols are described either by finite-
state machine, native programming code, or a combination of the two.
A simulator typically comes with a set of predefined modules and user-
friendly GUI. Some network simulators even provide extensive support
for visualization and animations.

At present there are many simulators in market like QualNet,
GTNets, Opnet, NS-2 etc. There are some problems with one of
the mostly used open source simulator ns-2; to overcome them a
new simulator is proposed which is called “Network Simulator-
3”. Section 2 will discuss about network simulators and their roll
and will compare ns-2 and ns-3. The overview of NS-3 is given
in section-3 with its features and models; the code architecture is
also given in this section. Section-4 deals with building network
scenario using ns-3 and reading the output. The challenges and
future work with conclusion are discussed next.

II. NETWORK SIMULATOR

NS or the network simulator is a discrete event network
simulator. It is popular in academia for its extensibility (due to
its open source model) and plentiful online documentation. ns is
popularly used in the simulation of routing and multicast
protocols, among others, and is heavily used in ad-hoc
networking research. ns supports an array of popular network
protocols, offering simulation results for wired and wireless
networks alike. It can be also used as limited-functionality
network emulator.

NS began development in 1989 as a variant of the REAL
network simulator. By 1995, ns had gained support from
DARPA, the VINT (Virtual Inter Network Testbed) project. at
LBL, Xerox PARC, UCB, and USC/ISI.

A. Ns-2 Simulator

NS-2 was built in C++ and provides a simulation interface
through OTcl, an object-oriented dialect of Tcl. The user

Manuscript received December 4, 2009.

describes a network topology by writing OTcl scripts, and then
the main ns program simulates that topology with specified
parameters [1]. Fig. 1 shows ns-2 object creation model.

The ns-2 makes use of flat earth model in which it assumes
that the environment is flat without any elevations or
depressions. However the real world does have geographical
features like valleys and mountains.

Fig. 1 Showing NS split objects model. Object created on OTcl has a

corresponding object in C++

Ns-2 fails to capture this model in it. Tcl is not a good
interpreter; a programmer has to suffer while writing code in tcl.
There is need of good compiler for ns-2.

B. Ns-3 Simulator

Generation 3 of ns has begun development as of July 1, 2006
and is projected to take four years. It is funded by the institutes
like University of Washington, Georgia Institute of Technology
and the ICSI Center for Internet Research with collaborative
support from the Planète research group at INRIA Sophia-
Antipolis. Currently ns-3 is in development phase. It is an event
based network simulator [3].

Fig. 2 NS3 Project Page

A few key points are worth noting at the onset [9]:

 Ns-3 is not an extension of ns-2; it is a new simulator.
The two simulators are both written in C++ but ns-3 is a
new simulator that does not support the ns-2 APIs. Some
models from ns-2 have already been ported from ns-2 to
ns-3.

 Ns-3 is intended to eventually replace the popular ns-2
simulator.

 Ns-3 is open-source, and the project strives to maintain
an open environment for researchers to contribute and
share their software.

Fig. 3 an open source project building a new network simulator to replace ns2

C. How Ns-3 is different from Ns-2

The differences between these two simulators are discussed
in table 1[1][2][3][9].

TABLE 1 DIFFERENCE BETWEEN NS-2 AND NS-3

III. NS-3 OVERVIEW

The brief overview of simulator is discussed in this section with

its features [4]-[8]:

A. Ns-3 Features

The ns-2 simulator has long been a widely used simulator for
research and education on Internet and other network systems.
However, work is progressing on a replacement for ns-2.
Borrowing concepts and implementations from several open
source simulators including ns-2, YANS and GTNetS, ns-3
differs from ns-2 in several ways, including:

1) New software core: Designed to improve scalability,

modularity, coding style, and documentation, the core is written

in C++ but with an optional Python scripting interface (instead

of OTcl). Several C++ design patterns such as smart pointers,

templates, callbacks, and copy-on-write are leveraged. Object

 NS-2 NS-3

First Release 1996 2008

Based on
NS-1 & REAL

simulators
NS-2, GTNets, YANS

Architecture OTcl & C++
C++ & optional Python

Scripting

Funded by

DARPA VINT

SAMAN & NSF

CONSER

NSF CISE & INRIA

Current

Support

Volunteers, USC ISI

& Sourceforge

NSF, INRIA, GT, WashU &

Volunteers

Scripting OTcl Python

Visualization NAM

NS-3-viz, pyviz, nam,

iNSpect (all under

development)

Scalability
Sequential

Simulation
Distributed Simulation

aggregation capabilities enable easier model and packet

extensions.

2) Attention to realism: The Internet nodes are designed to

be a more faithful representation of real computers, including the

support for key interfaces such as sockets and network devices,

multiple interfaces per nodes, use of IP addresses, and other

similarities.

3) Software integration: Architecture to support the

incorporation of more open-source networking software such as

kernel protocol stacks, routing daemons, and packet trace

analyzers, reducing the need to port or rewrite models and tools

for simulation.

4) Support for virtualization: Lightweight virtual

machines running over a (possibly wireless) simulation network

are an attractive combination for current research; ns-3 plans to

support a few modes of such operation including a native

“process” environment where Posix-compliant applications can

be easily ported to run in simulation space with their own private

stack, and including support for tying together virtual machines

of various types.

5) Testbed integration: Ns-3 will enable the testbed-based

researcher to experiment with novel protocol stacks and

emit/consume network packets over real device drivers or

VLANs. The internal representation of packets is network-byte

order to facilitate serialization.

6) Attribute system: Researchers require a means to

identify and possibly reassign all values used to configure

parameters in the simulator. Ns-3 provides an attribute system

that integrates the handling and documentation of default and

configured values.

7) Tracing architecture: Ns-3 is building a tracing and

statistics gathering framework using a callback-based design that

decouples trace sources from trace sinks, enabling customization

of the tracing or statistics output without rebuilding the

simulation core.

8) Topology: For ease of use, a number of stock topology

objects should be predefined. These stock objects can be

instantiated by a single line of C++ code constructing the object,

with configurable arguments. Stock objects should include trees,

meshes, stars, and random topologies of arbitrary size. They

have incorporated such topology objects from GTNetS.
Like ns-2, ns-3 is open-source and licensed under GNU

GPLv2, and welcomes developers and contributed code from
across academia, industry, and government.

B. Ns-3 Models

The simulator needs updating to account for the rapid growth
in wireless networking, including the many variants of IEEE
802.11 networking, emerging IEEE standards such as WiMax
(802.16), and cellular data services (GPRS, CDMA). Additional
models beyond wireless are also needed; Table 2 summarizes the

models used in the current ns-2, as well as models planned for
ns-3. Many of the planned models may already exist in some
form as contributed code; for a new model to be incorporated
into the main branch of ns-3, it will need to be validated,
conform as appropriate to the coding style, be licensed in a
compatible way, and be maintained going forward[8][10].

TABLE 2 NS-3 MODEL COMPARISON WITH EXISTING NS-2

Layers Existing CoreNS-2

Capability

Planned additions for NS-3

Application

and Transport

Ping, vat, telnet, FTP,

multicast, FTP,

probabilistic and trace-

driven traffic gen., web

cache

Sockets-like API, P2P,

traffic generator

TCP, UDP, SCTP, XCP,

TFRC, RAP, RTP,

Multicast: PGM, SRM,

RLM, PLM

TCP stack emulation

(Linux, BSD), DDCP,

additional high speed TCP

variants, UDP

Network Unicast: IP, MIP, DV,

LS, IPinIP, SR,

Multicast: SRM,

full IPv4 & IPv6 support,

NAT, BGP, OSPF, RIP,

IS-IS, PIM-SM,

IGMP/MLD

MANET: AODV, DSR,

DSDV, TORA, IMEP

MANET: OLSR

Link & MAC ARP, HDLC, GAF,

MPLS, LDP

MAC: CSMA, 802.11b,

802.15.4, satellite Aloha

new 802.11 model, 802.11

variants (mesh, QoS),

802.16, TDMA, CDMA,

GPRS, CSMA

Physical and

Mobility

Two-way, shadowing,

Omni Antennas, Energy

model Satellite repeater

IEEE 802 physical layers,

Rayleigh and Rician

fading channels, GSM,

Jakes composite loss

model, Friis, log-distance

C. Ns-3 Code Architecture

NS-3 code is divided into different parts. Here we start with
topology definition and then we define models to use, after that
we configure over model by giving them some addresses and
setting other parameters, and finally we executed the code. The
output which is generated in trace format will be analysed with
some tools like Wireshark. The procedure of code creation is
shown in the fig. 4:

Fig. 4 ns-3 Source Code

Model Topolog

y
Config

Visualize

Exec

Analysis

The detailed source code showing use of different classes in
ns-3 shown in fig 5.

Fig 5 ns-3 Detailed Source Code

IV. BUILDING A SCENARIO

For showing how to create any network scenario using NS-3
1
 we

have created a wireless scenario with fixed sources and sinks and

nodes placed at specific position having OLSR routing installed

on them. The output is generated in trace form which can be

readable by Wireshark [7]-[11]. Because of lack of space we

have not giving full code here but specific part of code with

detailed explanation

A. Example

//First line of code for every scenarios
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
//include required library files

#include "ns3/core-module.h"
#include "ns3/simulator-module.h"
#include "ns3/node-module.h"

………………………………...
//main () function

Int main (int argc, char *argv[])
{ //variable declaration
 bool verbose = true;

 ………………………………...
 //parameter definition

Config::SetDefault ("ns3::OnOffApplication::PacketSize",
StringValue("500"));

 ………………………………...
 // Creating ns-3 node obj, create, manage and access any node

 NodeContainer wifiStaNodes;// declare node
 wifiStaNodes.Create (nWifi);// creating nWifi nodes

// Construct wifi devices and the interconn channel b/w these
//nodes

YansWifiChannelHelper channel =
YansWifiChannelHelper::Default ();
YansWifiPhyHelper phy = YansWifiPhyHelper::Default ();
phy.SetChannel (channel.Create ());

//focusing on MAC layer, setting type of rate ctrl algo to use

 WifiHelper wifi = WifiHelper::Default ();
 wifi.SetRemoteStationManager
("ns3::ConstantRateWifiManager","DataMode",
StringValue("wifia-6mbs"));
 NqosWifiMacHelper mac = NqosWifiMacHelper::Default ();
 mac.SetType ("ns3::AdhocWifiMac","Slot", StringValue
("16us"));

………………………………...
//configureing the devices and channels

 NetDeviceContainer staDevices; //device container
 staDevices = wifi.Install (phy, mac, wifiStaNodes

………………………………...
//Position Allocation

MobilityHelper mobility;
Ptr<ListPositionAllocator> positionAlloc =
CreateObject<ListPositionAllocator> ();
for (uint32_t x = 0; x < nWifi; x++) {
 positionAlloc->Add (Vector ((x*latDistance), 0.0, 0.0));
 }
 mobility.SetPositionAllocator (positionAlloc);

………………………………...
// Nodes are stationary, constPos or RandomWalk2d

 mobility.SetMobilityModel
(“ns3::ConstantPositionMobilityModel”);
 mobility.Install (wifiStaNodes);

………………………………...
//Enable Routing on nodes
 OlsrHelper olsr;
 olsr.Create (wifiStaNodes.Get(1));
 olsr.Create (wifiStaNodes.Get(2));
………………………………...
// Protocol stacks installation on nodes

 InternetStackHelper stack; //topo helper
 stack.Install (wifiStaNodes);//NodeContainer as a param

//Ip add association on nodes base address and network mask
 Ipv4AddressHelper address;
 address.SetBase ("10.1.3.0", "255.255.255.0");
 address.Assign (staDevices);

………………………………...
uint16_t port = 9; // Discard port is 9 (RFC 863)
Ipv4Address remoteAddr = "255.255.255.255";
OnOffHelper onoff ("ns3::UdpSocketFactory", Address
(InetSocketAddress (remoteAddr, port)));
onoff.SetAttribute ("OnTime", RandomVariableValue
(ConstantVariable (10)));

………………………………...
// set Nodes to broadcast

ApplicationContainer apps;
Ptr<Node> appSource = NodeList::GetNode (0);
apps = onoff.Install (appSource);
apps.Start (Seconds (rndStartValue.GetValue()));
apps.Stop (Seconds (2.0));

………………………………...
// Create a packet sink to receive these packets
// Output does not change if the sink is not installed

1
Getting started with ns-3, discussed in Appendix

PacketSinkHelper sink ("ns3::UdpSocketFactory",
InetSocketAddress (Ipv4Address::GetAny (),port));

for (uint32_t nNodes = 1; nNodes < (nWifi-1); nNodes++)
 {
 std::cout << "Node " << nNodes << " is a sink." <<

std::endl;
 Ptr<Node> appSink = NodeList::GetNode (nNodes);
 apps = sink.Install (appSink);
 apps.Start (Seconds (0.0));
 }

………………………………...
// Tracing configuration

NS_LOG_INFO ("Configure Tracing.");
phy.EnablePcapAll ("Output_Adhoc");
Simulator::Stop (Seconds (10.0));
Simulator::Run ();
Simulator::Destroy ();
return 0;

}

B. Running the Program

For running the current program we can use waf script [12] as

shown in fig. 6

Fig. 6 Running Script

C. Reading Output File

For reading the output file generated by simulator we can

use tcpdump as well as Wireshark, we have used Wireshark to

read the output file as shown in fig. 7 [14].

Fig. 7 Reading Trace File

D. The Fundamental Objects

The Fundamental objects are node, application, sockets,
channels and net devices which we take into consideration while
writing any code in ns-3 [8]-[10].

1) Node: The motherboard of a computer with RAM,

CPU, and, IO interfaces

2) Application: A packet generator and consumer which

can run on a Node and talk to a set of network stacks.

3) Socket: The interface between an application and a

network stack.

4) NetDevice :A network card which can be plugged in an

IO interface of a Node

5) Channel :A physical connector between a set of

NetDevice objects

An ns-3 Node is a husk of a computer to which applications,

stacks, and NICs are added

Fig. 8 Node

6) Typical containers and helpers: There are different

container and helper classes in ns-3. NodeContainer,

NetDeviceContainer, Ipv4AddressContainer are some of the

container classes and InternetStackHelper, WifiHelper,

MobilityHelper, OlsrHelper are some of the helper classes in

ns3.

V. CHALLENGES

Like all new technologies and tools NS-3 is also facing
challenges from other simulators which are in market. Because
NS-3 is a new simulator so for overcoming these challenges and
fulfilling current needs of simulation it needs:

 participation from the research community

 Improving simulation credibility

 Contributed and supported models

 Maintainers

VI. FUTURE WORK

There are so many challenges faced by simulator field. Not a
single simulator satisfies current user’s need. There are so many
researches, comparisons and surveys are needed before
designing any simulator. Here we have compared two simulators
which are open source, where ns-3 is in development phase and
needed more support from its users and researchers. Ns-3
overcomes certain problems but there is need of some
improvement like, network animator tool for wireless scenarios,
user friendliness and ease of use as well as good tutorial and
wider community support, so that a naive user can easily get
comfortable with it. And most important that before release the
stable version it should be well tested, so that it is free of any
bugs and errors.

VII. CONCLUSION

There are many simulators (Google for network simulator)
like Opnet, QualNet, Shunra but because of terms of use and
high cost for industrial partners or publicly-funded research
these cannot get education licenses. Despite ns-2’s popularity,
there is a critical need for a new project to perform core
refactoring, integration, software maintenance, and extension of
the simulator.

Despite all these NS-3 is an active open-source project and
open-source development model, several simulator features
designed to aid current Internet research, community-based
development and maintenance model, trying to avoid some
problems with ns-2, such as interoperability and coupling
between models, lack of memory management, debugging of
split language objects.

A question that we often hear is "Should I still use ns-2 or
move to ns-3?" The answer is that it depends [9]. NS-3 does not
have all of the models that NS-2 currently has, on the other hand,
NS-3 does have new capabilities (such as handling multiple
interfaces on nodes correctly, use of IP addressing and more
alignment with Internet protocols and designs, more detailed
802.11 models, etc.). Ns-2 models can usually be ported to Ns-3.

REFERENCES

[1.] NS-2 user information
http://www.nsnam.isi.edu/nsnam/index.php/UserInformation

[2.] Mathieu Lacage, Thomas R. Henderson “Yet Another Network Simulator”
INRIA, Planete Project

[3.] Basic information about NS-3: http://www.nsnam.org

[4.] Getting started with NS-3 http://www.nsnam.org/getting_started.html

[5.] Detailed documentation of NS-3:http://nsnam.org/documents.html

[6.] Source code of NS-3: http://code.nsnam.org

[7.] NS-3 Community Support: http://mailman.isi.edu/mailman/listinfo/ns-
developers

[8.] Mathieu Lacage, “An NS-3 Tutorial” INRIA Tunis, April, 7th and 8th
2009

[9.] NS-3 Tutorial: http://www.nsnam.org/docs/tutorial/tutorial.html

[10.] Tom Henderson, Mathieu Lacage “ns-3 tutorial”, Workshop on ns-3
March 2009

[11.] NS-3 Wiki: http://www.nsnam.org/wiki/index.php/Main_Page

[12.] Details of Waf http://code.google.com/p/waf/

[13.] Mercurial main site http://www.selenic.com/mercurial/

[14.] Ulf Lamping, Richard Sharpe “Wireshark User's Guide: 29980 for
Wireshark 1.2.0”, NS Computer Software and Services P/L, Ed Warnicke,

APPENDIX

1) Environment Setup: Linux (Working from development

version)

a)

b)

c) cd ns-3 dev

d) ./download.py #will download components

e) ./build.py #will build NS-3

2) Building From Within Ns-3-Dev

a) cd ns-3-dev

b) ./waf distclean (similar to make distclean)

c) ./waf configure

d) Or ./waf –d optimized configure

e) ./waf

Availability (Linux, osx, cygwin, mingw):
• Released tarballs: http://www.nsnam.org/releases
• Development version: http://code.nsnam.org/ns-3-dev
The development version is usually stable: a lot of people use

it for daily work.

3) TESTING NS-3: You can run the unit tests of the ns-3

distribution by running the “--check” option,

./waf –check

These tests are run in parallel by waf, so the summary, “Ran n

tests” will appear as soon as all of the tasks are launched, but

you should eventually see a report saying that,

C++ UNIT TESTS: all 33 tests passed.

RUNNING A SCRIPT

We typically run scripts under the control of Waf. This allows

the build system to ensure that the shared library paths are set

correctly and that the libraries are available at run time. To run a

program, simply use the --run option in Waf. Let’s run the ns-3

equivalent of the ubiquitous hello world program by typing the

following:

./waf --run hello-simulator

Waf first checks to make sure that the program is built

correctly and executes a build if required. Waf then executes the

program, which produces the following output.

Hello Simulator

Congratulations. You are now an ns-3 user.

http://www.nsnam.isi.edu/nsnam/index.php/UserInformation
http://www.nsnam.org/
http://www.nsnam.org/getting_started.html
http://nsnam.org/documents.html
http://mailman.isi.edu/mailman/listinfo/ns-developers
http://mailman.isi.edu/mailman/listinfo/ns-developers
http://www.nsnam.org/docs/tutorial/tutorial.html
http://www.nsnam.org/wiki/index.php/Main_Pagel
http://code.google.com/p/waf/
http://www.selenic.com/mercurial/

