
VLSI ARCHITECTURE AND FPGA IMPLEMENTATION

 OF ICE ENCRYPTION ALGORITHM

Mrs.Laxmi Tiwari Mrs.Babita Verma Mr.Saurabh Singh

laxmi.nanhoriya@gmail.com babitaself@rediffmail.com

saurabh_singh1983@rediffmail.com

Lecturer IT/ CSE

BIT,Durg India
ABSTRACT

In modern security, the need for safe

cryptographic algorithms that are

hardware implemental is great. A

hardware architecture is proposed in

this paper, for the implementation of

the ICE encryption algorithm. Since

this cipher is optimized for use on

software, a hardware implementation of

that algorithm that achieves good

performance results has much interest.

The proposed implementation can be

used for both encryption and

decryption process. It is a folded

architecture using feedback logic,

designed for small chip covered area and

high speed performance. The proposed

architecture was implemented by using

an FPGA device. The achieved

throughput is equal to

116 Mbit/sec, using a system clock

with frequency up to 29.1 MHz.

1. INTRODUCTION

Security is a primary requirement of

any wireless cryptographic protocol. In

order to find a solution to this always up

to date problem, cryptographic

algorithms are

constructed to provide secure

communication applications. However,

the clever design of an algorithm is

essential if the security of an

application is to be

maintained. Although there are many

good algorithms with different usages

and characteristics, not all of them can

be

characterized fully secure [1]. Many

works from different research groups

have been published, analyzing

cryptographic methods for finding

holes in the security

strength of today’s encryption

algorithm. Thus new encryption

algorithms are needed that do not have

such security holes. That however might

have the side effect of high complexity,

which can make the implementation of

an algorithm very difficult if not

impossible.

 One of the major problems of modern

computer security is the design of

cryptographic algorithms that have as

little vulnerabilities as possible while

maintaining their low implementation

complexity. Many algorithms that are

cryptographically secure are not easily

implemented in computer applications

especially in hardware. Thus the need

 for hardware implementations of

secure algorithms becomes even greater.

 Matthew Kwan [2] in order to

solve the need for secure encryption

algorithms proposed a new algorithm

similar to DES. This algorithm is

called ICE, which

stands for Information

Concealment Engine, and it has the

interface of DES thus maintaining full

compatibility with that algorithm. It can

act as a substitute in existing

applications. It is based on the idea of

Data Dependence Rotation (DDR)

since it uses Controlled permutation

(CP) in order to maintain its

cryptographic security, like CIKS-1 and

SPECTR-H64 algorithms [3, 4]. The

ICE algorithm was designed for use in

software applications. Those

applications however are slow due to the

use of modular arithmetic [2]. So the

need for faster

implementations is great. That can be

achieved through hardware

implementations.

 The ICE algorithm has not been

implemented in hardware so there is a

certain interest as to if that is

possible and if the results are good

enough for the hardware to be usable.

Considering the fact that hardware

implementations are generally faster and

more reliable than software

implementations the outcome of a

hardware design is even more

interesting.

In this paper, an architecture and the

VLSI implementation of the ICE

encryption algorithm are proposed.

The system operates for the both

encryption

and decryption processes and has been

optimized for low hardware resources

and for high–speed performance. The

proposed architecture has very

encouraging performance result in

terms of speed and throughput. This

makes the design very useful in current

applications that use DES as the base

of a cryptographic protocol.

With the proposed architecture we focus

on proving that the ICE algorithm can

easily be implemented in hardware.

 The paper is organized as follows:

In Section 2 the ICE algorithm is

described. In Section 3, a thorough

analysis of the architecture and the VLSI

implementation

is made. Performance analysis of the

architectures is made in Section 4 and

finally some conclusions are presented

in Section 5.

2. THE ICE ENCRYPTION

ALGORITHM

ICE is a standard Feistel block cipher

[2], with a structure similar to DES. It

takes a 64-bit plaintext, splits it in two

32-bit halves and mixes them with the

key in a

fairly simple process. The right half and

a 60-bit subkey are fed into the

function F. Then the output is

XORed with the left part of the key and

the halves are swapped. This is the

Transformation Round of the ICE

algorithm.

This process is repeated for 16 rounds

[2]. However the final round, before the

ciphertext production, is different.

The final swap is omitted. The

decryption process is the same, except

that the subkeys are used in reverse

order.

From the above description of ICE

algorithm it is clear that its strength is

centred in the F function. In ICE the 32-

bit plaintext, using a function E, is

expanded in

four 10-bit values according to the

manner:

E1= P1 P0 P31 P30 P29 P28 P27 P26 P25

P24

E2= P25 P24 P23 P22 P21 P20 P19 P18

P17 P16

E3= P17 P16 P15 P14 P13 P12 P11 P10 P9

P8

E4= P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

One of the differences from DES is

that after the

expansion function E, key permutation is

used [2]. A 20- bit subkey, called

permutation key is used to swap E1

with E3 and E2 with E4. When the

odd bits of the

permutation key are set they swap E1

relative bits with E3 bits else they swap

E2 relative bits with E4 bits. The

outcome is XORed with a 40-bit

subkey and the fed in the S-boxes.

 The S-boxes of ICE use Galois Field

exponentiation. Each S-box takes a

10-bit input X. Bits X9 and X0 are

concatenated and form the row selector

R while bits X8 to X1 concatenated form

the 8-bit column selector C. For each

row, there is a XOR offset value OR

and a Galois Field prime PR. The output

of the S-box is an 8bit value which is

given by (C xor OR)
7
mod PR . In Table

1 the values of the XOR offset and the

Galois Field primes can be seen for all

four S-boxes.

Table 1. The S-box XOR offset values

and the S-box Galois Field prime values

S- O0 O1 O2 O3 P0

 P1 P2 P3

box

S1 131 133 155 205 333

 313 505 369

S2 204 167 173 65 379

 375 319 391

S3 75 46 212 51 361

 445 451 397

S4 234 205 46 4 397

 425 395 505

 The four 8-bit outputs of the S-boxes

are combined using a permutation

function P in a 32-bit value which is the

result of the F function [2].

3. PROPOSED ARCHITECTURE

The proposed Feedback Architecture is

shown in Fig. 1. The proposed

Feedback Architecture performs both

encryption and decryption with input

plaintext block and

key vector equal to 64 bits. It uses an

input and an output register. Each of

them stores the values of the left and

right part of every round and swaps

the two parts if

needed (according to the algorithm in

the final round there is no swap).

Also a 16x60-bit RAM is needed to

load and store the round keys.

 The Key Expansion Unit creates the

round keys, using the 64-bit Input Key

following the specifications of ICE. The

Keys are stored inside the RAM for

every

round.

Fig.1 The Proposed feedback

architecture

The encryption process is fairly

simple. In each clock cycle, the data

stored in the input register are

inserted in the ICE Transformation

Round along with the subkeys stored in

the RAM. This process is repeated for

16 rounds. However at the final round,

the Output Register is used in order to

swap the left and right part of the ICE

Transformation Round Output. That

value of the Output Register is the

cipher text. The decryption process

follows the same process. However

the subkeys are used in reverse order.

 From the analysis of ICE, it is

clearly seen that the main design

interest lies in the ICE

Transformation round of the algorithm,

shown in Figure 2. Especially, in

the implementation of the F function.

The F function has four parts. The

Expansion function E, the key

permutation, the S-boxes and the

Permutation function P.

Key permutation can easily be

implemented using two multiplexers 2-

1, while the Expansion and

Permutation functions are just a

rearrangement of wires.

So the highest implementation cost of

the F function lies in the design of the S-

boxes.

Considering that each S–box uses

modular exponentiation in order to

calculate its output, a VLSI

architecture based on Montgomery

Multiplication algorithm is proposed.

This component is specially

designed to do the mathematical

function A
7
mod P. The architecture of

this component is pipelined, with 6

stages, and it is based on the following

algorithm:

Fig.2 The ICE Transformation Round

Function A
7
mod P (X, P)

1. A=MM(X, R’, P)

2. B=MM(A, A, P)

3. C=MM(B, A, P)

4. D=MM(C, C, P)

5. E=MM(D, A, P)

6. Out=MM(E, 1, P)

MM is the Montgomery Multiplication

function and R’=R
2
modP is a pre

calculated, fixed number. Step 1 is

needed to transform the input value X

into Montgomery format and step 6 to

change the Montgomery formatted

result E into a normal number value.

The Montgomery Multiplication

algorithm was implemented using a

systolic architecture, shown in Figure

3, based on the following algorithm [5-

8]:

Function MM (X, Y, N)

1. A=0

2. For k=0 to n-1 do begin

3. q=(a0 +xky0) mod b

4. A=A+xkY+qN

5. A=A/b

 End

6. Return A

This algorithm is a modified version of

the original Montgomery multiplication

algorithm [6]. The base b is considered

Radix 2 (b=2) and R=2
n
 where n is

the bit length of the value N.

 The architecture of the Montgomery

multiplication, as seen in Figure 3, is

an array of Processing Elements (Figure

3(c)). The elements on the first row,

however, have a XOR gate more than

the basic Elements PE. This gate is

used for the calculation of the q

value. Those elements are called Q-

calc Processing Elements (Figure 3(b)).

The output of the array is produced

in a Carry

Save format so an adder is needed in

order to get the final result. For that

function an adder was implemented

using Carry look ahead logic.

(a) The Systolic Architecture of

 Montgomery Multiplication

(b) The Hardware Architecture of the

MM Function

The input X of the S-box is XORed

with the appropriate value from Table 1.

The output is fed to the A7mod P

function where P is the value taken from

Table

1. The appropriate values for the S-box

are chosen from X9X0 bits of the input

using multiplexers 4-1. The result of the

A
7
mod P function is the output of the S-

box. The structure of an S-box is shown

in Figure 4.

Fig.4. The Hardware architecture of the

MM Function

 4 PERFORMANCE

The proposed architecture has

been captured by using VHDL.

All the internal components of

the design were synthesized

placed and routed using XILINX

FPGAdevices. The VLSI synthesis

results are shown in Table2. The

throughput reaches the value of 116

Mbit/sec for the encryption and

decryption process.

According to our knowledge until

now, no other hardware

implementation of the ICE cipher has

been well known in the technical

literature. For this reason the proposed

architecture was compared with some

good implementations of other widely

used encryption algorithms that are

based on the DDR logic [9-12]. In

Table 3, the implementations are

compared in both covered area and

operating frequency. ICE performance

in operating frequency is better

compared to AES [9] and IDEA [10]

block ciphers. Furthermore, in order

to provide a detailed view of ICE

performance, we compared ICE

implementation with an RSA

implementation [12].

 5.CONCLUSIONS

ICE is a symmetric key block cipher

specially designed for software

applications. An efficient architecture

for the VLSI implementation is proposed

in this paper. It is designed for high

clock speed – performance and

minimized area resources. It is

proven that the ICE algorithm, used

for this architecture, is able to be

implemented on hardware applications.

 The implementation on FPGA

is a system that has an external clock

of 29.1 MHz and a throughput of

116Mbits/sec. Compared to other

popular encryption algorithms it is

concluded that the implementation’s

performance is better than most block

encryption algorithms implementations.

6. REFERENCES

[1] Bruce Schneier, Applied

Cryptography – Protocols, Algorithms

and Source Code in C, John Wiley &

Sons, second ed. New York, 1996.

[2] M. Kwan, “The Design of the

ICE Encryption Algorithm,” in Proc.

of Fast Software Encryption

Workshop,1997.

[3]A. A. Moldovyan and N. A.

Moldovyan, “A cipher Based on Data -

Dependent Permutations”, Journal of

Cryptology,

no.15, pp 61 – 72, 2002.

[4] Nick D. Goots, Alexander A.

Moldovyan, Nick A. Moldovyan, “Fast

Encryption Algorithm SPECTR –

H64”, in Proc. Of International

Workshop on Mathematical Methods,

Models and Architectures for

Computer Networks Security, (MMM-

ACNS’01), Russia, May 2001,

Springer – Verlag, pp. 275-286

[5] D.J. Guan, Montgomery Algorithm

for Modular

Multiplication, Lecture notes, National

Sun Yat Sen University, 2001.

[6] Peter L. Montgomery, “Modular

multiplication without trial division,”

Mathematics of Computation, vol. 44,

no. 170,

pp. 519-521, 1985.

[7] T.H. Cormen, C.E. Leiserson, and

R.L. Rivest, Introduction to Algorithms,

The MIT Press, Cambridge, 1990.

[8] Shay Gueron, “Enhanced

Montgomery Multiplication,” in Proc. of

Workshop on Cryptographic Hardware

and Embedded

Systems, San Francisco, August 13-15

2002.

[9] K. Gaj and P. Chodowiec,

“Comparison of the Hardware

Performance of the AES Candidates

Using Reconfigurable

Hardware,” in proc. Of Third

Advanced Encryption Standard

(AES) Candidate Conf, Apr. 2000.

10] R. Zimmermann, A. Curiger, H.

Bonnenberg, H. Kaeslin, N. Felber, and

W.Fichtner, “A 177Mb/s VLSI

Implementation of the International Data

Encryption Algorithm”, IEEE Journal of

Solid-State Circuits, vol. 29, no. 3, pp

303 – 307, 1994.

[11]N. Sklavos, A. A. Moldovyan,

and O. Koufopavlou, “Encryption and

Data Dependent Permutations:

Implementation Cost and Performance

Evaluation”,proceedings of

International Workshop on

MathematicalMethods, Models and

Architectures for Computer Networks

Security, (MMM-ACNS’03), Springer-

Verlag, Berlin 2003.

[12]Taek-Won Kwan, Chang-Seok

You, Won-Seok Heo, Yong-Kyu

Kang, and Jun-Rim Choi, “Two

implementation methods of a 1024-bit

RSA cryptoprocessor Based on Modified

Montgomery Algorithm”,proceedings

of 2001 IEEE ISCAS

’01, May 6 - 9, Sydney, Australia.

